181 resultados para SWITCH
Resumo:
We report, for the first time to the best of our knowledge, on a passively Q-switched Nd:YVO4 laser with a GaAs absorber grown at low temperature (LT) by metal organic vapor phase expitaxy. Using the LT GaAs absorber as well as an output coupler, a passively Q-switched laser whose pulse duration is as short as 90 ns, was obtained.
Resumo:
Peculiar current jumps and hysteresis in current-voltage curves are reported in an illuminated heterostructure consisting basically of a thick AlAs layer and a narrow GaAs quantum well. These novel features come from the photon-assisted transfer of electron-hole pairs and the resultant charge polarization in the structure, mainly caused by the resonant Gamma-X coupling at the heterointerfaces. Using the transfer-matrix method, the simulated current density-voltage curve reproduces the main features of the experimental observations in the case where the influence of resonant Gamma-X coupling at the heterointerfaces is included, further confirming the physical mechanism involved. The structure presented here may be used as a new type of photonic memory cell and also as an optically controlled switch.
Resumo:
Modulation arms with different widths are introduced to Mach-Zehnder interferometers (MZIs) to obtain improved performance. Theoretical analysis and numerical simulation have shown that when the widths of the two arms are properly designed to achieve an inherent m pi/2 (m is an odd integer) optical phase difference between the arms, the asymmetric MZI presents higher modulation speed. Furthermore, the carrier-absorption induced divergence of insertion losses in silicon-on-insulator (SOI) based MZI optical switches can be obviously improved.
Resumo:
A novel Si-based metal-oxide-semiconductor (MOS) electrooptic phase modulator including two shunt oxide layer capacitors integrated on a silicon-on-insulator (SOI) waveguide is simulated and analyzed. The refractive index near the two gate oxide layers is modified by the free carrier dispersion effect induced by applying a positive bias on the electrodes. The theoretical calculation of free carrier distribution coupled with optical guided mode propagation characteristics has been carried out. The influence of the structure parameters such as the width and the doping level of the active region are analyzed. A half-wave voltage V-pi = 4 V is demonstrated with an 8-mm active region length and a 4-mu m width of an inner rib under an accumulation mode. When decreasing the inner rib width to 1 mu m, the phase modulation efficiency is even higher, and the rise and fall times reach 50 and 40 ps, respectively, with a 1.0 x 10(17) cm(-3) doping level in the active region.
Resumo:
The transmission through coupled quantum dots (CQDs) is calculated using the coupled-channel recursion method. Our results reveal that the conductance peaks move to high energy as the CQDs radius decreases or the period increases. If we increase the transverse momentum the conductance peaks move to high energy. Applying this characteristic, we can design a switch device using CQDs by applying a static electric field perpendicular to transmission direction. The theoretical results qualitatively agree with the available experimental data. Our calculated results may be useful for the application of CQDs to photoelectric devices. (C) 2003 American Institute of Physics.
Resumo:
Proceeding from the consideration of the demands from the functional architecture of high speed, high capacity optical communication network, this paper points out that photonic integrated devices, including high speed response laser source, narrow band response photodetector high speed wavelength converter, dense wavelength multi/demultiplexer, low loss high speed response photo-switch and multi-beam coupler are the key components in the system. The, investigation progress in the laboratory will be introduced.
Resumo:
Novel guest nonlinear optical (NLO) chromophore molecules (4-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were doped in poly (methyl methacrylate) (PMMA) host with a concentration of approximately 15% by weight. For a useful macroscopic electro-optic (EO) effect, these NLO molecules NAEC were arranged in a noncentrosymmetric structure in the host polymer by corona-onset poling at elevated temperature (COPET). For applying NAEC-PMMA polymer in optical devices such as EO switch, its optical properties have been investigated. The UV/Visible absorption spectra for the unpoled and poled polymer film were determined. The refractive index of the film was also determined from measurements of the coupling angles with the reflective intensity at 632.8 nm wavelength. Using the simple reflection technique, the EO coefficient 33 value was measured as 60 pm/V at 632.8 nm wavelength. The second-order nonlinear coefficient d(33) was characterized by the second-harmonic-generation (SHG) experimental setup and the calculated d(33) value reached 18.4 pm/V at 1064 nm wavelength. The relation between the second-order nonlinear coefficients d(33) and d(13) for the poled polymer film was also discussed in detail and the ratio d(33)/d(13) value was obtained as 3.3. (C) 2002 Kluwer Academic Publishers.
Resumo:
Photoluminescence (PL) spectra of GaInNAs/GaAs multiple quantum wells grown on a GaAs substrate by molecular beam epitaxy are measured in a range of temperatures and excitation power densities. The energy position of the dominant PL peak shows an anomalous S-shape temperature dependence instead of the Varshni relation. By careful inspection, especially for the PL under lower excitation power density, two near bandedge peaks are well identified. These are assigned to carriers localized in nitrogen-induced bound states and interband excitonic recombinations, respectively. It is suggested that the temperature-induced switch of such two luminescence peaks in relative intensity causes a significant mechanism responsible for the S-shape shift observed in GaInNAs. A quantitative model based on the thermal depopulation of carriers is used to explain the temperature dependence of the PL peak related to N-induced bound states.
Resumo:
Low noise field effect transistors and analogue switch integrated circuits (ICs) have been fabricated in semi-insulating gallium arsenide (SI-GaAs) wafers grown in space by direct ion-implantation. The electrical behaviors of the devices and the ICs have surpassed those fabricated in the terrestrially grown SI-GaAs wafers. The highest gain and the lowest noise of the transistors made from space-grown SI-GaAs wafers are 22.8 dB and 0.78 dB, respectively. The threshold back-gating voltage of the ICs made from space-grown SI-GaAs wafers is better than 8.5 V The con-elation between the characterizations of materials and devices is studied systematically. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Semi-insulating gallium arsenide single crystal grown in space has been used in fabricating low noise field effect transistors and analog switch integrated circuits by the direct ion-implantation technique. All key electrical properties of these transistors and integrated circuits have surpassed those made from conventional earth-grown gallium arsenide. This result shows that device-grade space-grown semiconducting single crystal has surpassed the best terrestrial counterparts. (C) 2001 American Institute of Physics.
Resumo:
The authors demonstrate a 3dB 2 x 2 parabolically tapered multimode interference (MMT) coupler with a large cross-section and space between the different ports using silicon-on-insulator technology. The device exhibits a uniformity of < 0.8dB and can be used in the realisation of an MMI-based optical switch with a high extinction ratio.
Resumo:
We have shown that high energy ion implantation enhanced intermixing (HE-IIEI) technology for quantum well (QW) structures is a powerful technique which can be used to blue shift the band gap energy of a QW structure and therefore decrease its band gap absorption. Room temperature (RT) photoluminescence (PL) and guided-wave transmission measurements have been employed to investigate the amount of blue shift of the band gap energy of an intermixed QW structure and the reduction of band gap absorption, Record large blue shifts in PL peaks of 132 nm for a 4-QW InGaAs/InGaAsP/InP structure have been demonstrated in the intermixed regions of the QW wafers, on whose non-intermixed regions, a shift as small as 5 nm is observed. This feature makes this technology very attractive for selective intermixing in selected areas of an MQW structure. The dramatical reduction in band gap absorption for the InP based MQW structure has been investigated experimentally. It is found that the intensity attenuation for the blue shifted structure is decreased by 242.8 dB/cm for the TE mode and 119 dB/cm for the TM mode with respect to the control samples. Electro-absorption characteristics have also been clearly observed in the intermixed structure. Current-Voltage characteristics were employed to investigate the degradation of the p-n junction in the intermixed region. We have achieved a successful fabrication and operation of Y-junction optical switches (JOS) based on MQW semiconductor optical amplifiers using HE-IIEI technology to fabricate the low loss passive waveguide. (C) 1997 Published by Elsevier Science B.V.
Resumo:
The novel design of a silicon optical switch on the mechanism of a reverse p-n junction is proposed. The figuration of contact regions at slab waveguides and the ion implantation technology for creation of junctions are employed in the new design. The two-layer rib structure is helpful for reduction of optical absorption losses induced by metal and heavily-doped contact. And more, simulation results show that the index modulation efficiency of Mach-Zehnder interferometer enhances as the concentrations of dopants in junctions increase, while the trade-off of absorption loss is less than 3 dB/mu m. The phase shift reaches about 5 x 10(-4) pi/mu m at a reverse bias of 10V with the response time of about 0.2ns. The preliminary experimental results are presented. The frequency bandwidth of modulation operation can arrive in the range of GHz. However, heavily-doped contacts have an important effect on pulse response of these switches. While the contact region is not heavily-doped, that means metal electrodes have schottky contacts with p-n junctions, the operation bandwidth of the switch is limited to about 1GHz. For faster response, the heavily-doped contacts must be considered in the design.
Resumo:
SOI (Silicon on Insulator) based photonic devices, including stimulated emission from Si diode, RCE (Resonant Cavity Enhanced) photodiode with quantum structure, MOS (Metal Oxide Semiconductor) optical modulator with high frequency, SOI optical matrix switch and wavelength tunable filter are reviewed in the paper. The emphasis will be played on our recent results of SOI-based thermo-optic waveguide matrix switch with low insertion loss and fast response. A folding re-arrangeable non-blocking 4x4 matrix switch with total internal reflection (TIR) mirrors and a first blocking 16 x 16 matrix were fabricated on SOI wafer. The extinction ratio and the crosstalk are better. The insertion loss and the polarization dependent loss (PDL) at 1.55 mu m increase slightly with longer device length and more bend and intersecting waveguides. The insertion losses are expected to decrease 2-3 dB when anti-reflection films are added in the ends of the devices. The rise and fall times of the devices are 2.1 mu s and 2.3 mu s, respectively.
Resumo:
Novel compact design for 4-channel SOI-based reconfigurable optical add/drop multiplexer using microring resonators is presented and analyzed. Microring resonators have two important attributes as a key new technology for future optical communications, namely functionality and compactness. Functionality refers to the fact that a wide range of desirable filter characteristics can be synthesized by coupling multiple rings. Compactness refers the fact that ring resonators with radii about 30 mu m can lead to large scale integration of devices with densities on the order of 10(4) similar to 10(5) devices per square centimeter. A 4-channel reconfigurable optical add/drop multiplexer comprises a grid-like array of ridge waveguides which perpendicularly cross through each other. SOI-based resonators consisted of multiple rings at each of the cross-grid nodes serve as the wavelength selective switch, and they can switch an optical signal between two ports by means of tuning refractive index of one of the rings. The thermo-optic coefficient of silicon is 1.86x 10(-4) /K. Thus a temperature rise of 27K will increase the refractive index by 5 x 10(-3), which is enough to cause the switching of our designed microring resonators. The thermo-optic effect is used to suppress the resonator power transfer, rather than to promote loss. Thus, the input signal only suffers small attenuation and simultaneously low crosstalk can be achieved by using multiple rings.