201 resultados para Reverse order


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron induced defect levels in high resistivity silicon detectors have been studied using a current-based macroscopic defect analysis system: thermally stimulated current (TSC) and current deep level transient spectroscopy (I-DLTS). These studies have been correlated to the traditional C-V, I-V, and transient current and charge techniques (TCT/TChT) after neutron radiation and subsequent thermal anneals. It has been found that the increases of the space charge density, N-eff, in irradiated detectors after thermal anneals (N-eff reverse anneal) correspond to the increases of deep levels in the silicon bandgap. In particular, increases of the double vacancy center (V-V and V-V-- -) and/or C-i-O-i level have good correlations with the N-eff reverse anneal. It has also been observed that the leakage current of highly irradiated (Phi(n) > 10(13) n/cm(2)) detectors increases after thermal anneals, which is different from the leakage current annealing behavior of slightly irradiated (Phi(n) < 10(13) n/cm(2)) detectors. It is apparent that V-V center and/or C-i-O-i level play important roles in both N-eff and leakage current degradations for highly irradiated high resistivity silicon detectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current-based microscopic defect analysis methods with optical filling techniques, namely current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC), have been used to study defect levels in a high resistivity silicon detector (p(+)-n-n(+)) induced by very high fluence neutron (VHFN) irradiation (1.7x10(15) n/cm(2)). As many as fourteen deep levels have been detected by I-DLTS. Arrhenius plots of the I-DLTS data have shown defects with energy levels ranging from 0.03 eV to 0.5 eV in the energy band gap. Defect concentrations of relatively shallow levels (E(t) < 0.33 eV) are in the order of 10(13)cm(-3), while those for relatively deep levels (E(t) > 0.33 eV) are in the order of 10(14) cm(-3). TSC data have shown similar defect spectra. A full depletion voltage of about 27,000 volts has been estimated by C-V measurements for the as-irradiated detector, which corresponds to an effective space charge density (N-eff) in the order of 2x10(14) cm(-3). Both detector leakage current and full depletion voltage have been observed to increase with elevated temperature annealing (ETA). The increase of the full depletion voltage corresponds to the increase of some deep levels, especially the 0.39 eV level. Results of positron annihilation spectroscopy have shown a decrease of total concentration of vacancy related defects including vacancy clusters with ETA, suggesting the breaking up of vacancy clusters as possible source of vacancies for the formation of single defects during the reverse anneal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of second-order Raman-scattering experiments on n- and p-type 4H-SiC are presented,covering the acoustic and the optical overtone spectral regions.Some of the observed structures in the spectra are assigned to particular phonon branches and the points in the Brillouin zone from which the scattering originates.There exists a doublet at 626/636cm-1 with energy difference about 10cm-1 in both n- and p-type 4H-SiC,which is similar to the doublet structure with the same energy difference founded in hexagonal GaN,ZnO, and AlN.The cutoff frequency at 1926cm-1 of the second-order Raman is not the overtone of the A1(LO) peak of the n-type doping 4H-SiC,but that of the undoping one.The second-order Raman spectrum of 4H-SiC can hardly be affected by doping species or doping density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

于2010-11-23批量导入

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of silicon film samples were prepared by plasma enhanced chemical vapor deposition (PECVD) near the threshold from amorphous to nanocrystalline state by adjusting the plasma parameters and properly increasing the reactions between the hydrogen plasma and the growing surface. The microstucture of the films was studied by micro-Raman and Fourier transform infrared (FTIR) spectroscopy. The influences of the hydrogen dilution ratio of silane (R-H = [H-2]/[SiH4]) and the substrate temperature (T-s) on the microstructural and photoelectronic properties of silicon films were investigated in detail. With the increase of RH from 10 to 100, a notable improvement in the medium-range order (MRO) of the films was observed, and then the phase transition from amorphous to nanocrystalline phase occurred, which lead to the formation of diatomic hydrogen complex, H-2* and their congeries. With the increase of T-s from 150 to 275 degreesC, both the short-range order and the medium range order of the silicon films are obviously improved. The photoconductivity spectra and the light induced changes of the films show that the diphasic nc-Si/a-Si:H films with fine medium-range order present a broader light spectral response range in the longer wavelength and a lower degradation upon illumination than conventional a-Si:H films. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-crystal X-ray diffraction and I-V characterization have been carried out on the GSMBE grown SiGe/Si p-n heterojunction materials. Results show that the SiGe alloys crystalline quality and the misfit dislocations are critical influences on the reverse leakage current. The crystal perfection and/or the degree of metastability of the Sice alloys have been estimated in terms of the model proposed by Tsao with the experimental results. High-quality p-n heterojunction diodes can be obtained by optimizing the SiGe alloy structures, which limit the alloys in the metastable states. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel accurate numerical model for shallow water equations on sphere have been developed by implementing the high order multi-moment constrained finite volume (MCV) method on the icosahedral geodesic grid. High order reconstructions are conducted cell-wisely by making use of the point values as the unknowns distributed within each triangular cell element. The time evolution equations to update the unknowns are derived from a set of constrained conditions for two types of moments, i.e. the point values on the cell boundary edges and the cell-integrated average. The numerical conservation is rigorously guaranteed. in the present model, all unknowns or computational variables are point values and no numerical quadrature is involved, which particularly benefits the computational accuracy and efficiency in handling the spherical geometry, such as coordinate transformation and curved surface. Numerical formulations of third and fourth order accuracy are presented in detail. The proposed numerical model has been validated by widely used benchmark tests and competitive results are obtained. The present numerical framework provides a promising and practical base for further development of atmospheric and oceanic general circulation models. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new kind of shock capturing method is developed. Before applying the high order accurate traditional scheme which is called as base scheme in this paper the fluid parameters are preconditioned in order to control the group velocity. The newly constructed scheme is high order accurate, simple, has high resolution of the shock, and less computer time consumed.