194 resultados para Récepteurs couplés aux protéines G (RCPG)
Resumo:
采用种子乳液聚合方式 ,以 K2 S2 O8为引发剂引发聚合 ,合成了一系列 PB- g- SAN接枝共聚物。考察了引发剂用量、分子量调节剂 (TDDM)用量和橡胶 (PB)含量对 PB- g- SAN接枝共聚物接枝率的影响。并将 K2 S2 O8引发剂与氧化 -还原引发体系做了比较。结果表明 ,随着引发剂 K2 S2 O8用量逐渐增加 ,PB- g- SAN接枝共聚物的接枝率逐渐降低。引发剂用量太少时 ,不能满足聚合要求 ,PB- g- SAN接枝共聚物的接枝率也会降低。随着分子量调节剂 (TDDM)用量的增加 ,PB- g- SAN接枝共聚物的接枝率逐渐降低。随胶含量的增加 ,PB- g- SAN接枝共聚物的接枝率逐渐降低。采用氧化 -还原引发体系引发聚合有利于接枝反应的进行 ,在 PB含量相同时 ,采用氧化 -还原引发体系合成的 PB- g- SAN接枝共聚物的接枝率比采用 K2 S2 O8合成的接枝共聚物接枝率高。
Resumo:
More than 22 000 folding kinetic simulations were performed to study the temperature dependence of the distribution of first passage time (FPT) for the folding of an all-atom Go-like model of the second beta-hairpin fragment of protein G. We find that the mean FPT (MFPT) for folding has a U (or V)-shaped dependence on the temperature with a minimum at a characteristic optimal folding temperature T-opt*. The optimal folding temperature T-opt* is located between the thermodynamic folding transition temperature and the solidification temperature based on the Lindemann criterion for the solid. Both the T-opt* and the MFPT decrease when the energy bias gap against nonnative contacts increases. The high-order moments are nearly constant when the temperature is higher than T-opt* and start to diverge when the temperature is lower than T-opt*. The distribution of FPT is close to a log-normal-like distribution at T* greater than or equal to T-opt*. At even lower temperatures, the distribution starts to develop long power-law-like tails, indicating the non-self-averaging intermittent behavior of the folding dynamics. It is demonstrated that the distribution of FPT can also be calculated reliably from the derivative of the fraction not folded (or fraction folded), a measurable quantity by routine ensemble-averaged experimental techniques at dilute protein concentrations.
Resumo:
The modification of high-impact polystyrene (HIPS) was accomplished by melt-grafting glycidyl methacrylate (GMA) on its molecular chains. Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis were used to characterize the formation of HIPS-g-GMA copolymers. The content of GMA in HIPS-g-GMA copolymer was determined by using the titration method. The effect of the concentrations of GMA and dicumyl peroxide on the degree of grafting was studied. A total of 1.9% of GMA can be grafted on HIPS. HIPS-g-GNU was used to prepare binary blends with poly(buthylene terephthalate) (PBT), and the evidence of reactions between the grafting copolymer and PBT in the blends was confirmed by scanning electron microscopy (SEM), dynamic mechanical analysis, and its mechanical properties. The SEM result showed that the domain size in PBT/HIPS-g-GMA blends was reduced significantly compared with that in PBT/HIPS blends; moreover, the improved strength was measured in PBT/HIPS-g-GMA blends and results from good interfacial adhesion. The reaction between ester groups of PBT and epoxy groups of HIPS-g-GMA can depress crystallinity and the crystal perfection of PBT.
Resumo:
A poly(butylene terephthalate) (PBT)/linear low-density polyethylene (LLDPE) alloy was prepared with a reactive extrusion method, For improved compatibility of the blending system, LLDPE grafted with acrylic acid (LLDPE-g-AA) by radiation was adopted in place of plain LLDPE. The toughness and extensibility of the PBT/LLDPE-g-AA blends, as characterized by the impact strengths and elongations at break, were much improved in comparison with the toughness and extensibility of the PBT/LLDPE blends at the same compositions. However, there was not much difference in their tensile (or flexural) strengths and moduli. Scanning electron microscopy photographs showed that the domains of PBT/LLDPE-g-AA were much smaller and their dispersions were more homogeneous than the domains and dispersions of the PBT/ T,T PE blends. Compared with the related values of the PBT/LLDPE blends, the contents and melting temperatures of the usual spherulites of PBT in PBT/LLDPE-g-AA decreased.
Resumo:
研究了 HIPS/ PC共混物的相容性及 HIPS- MA对 HIPS( 30 ) / PC( 70 )共混物的相容性、形态和拉伸性能的影响。DSC研究结果表明 ,HIPS/ PC共混物中 PS的玻璃化转变温度 ( Tg)不随组成而变化 ,而PC的 Tg 随其质量分数的降低逐渐向低温移动 ,说明 HIPS/ PC是部分相容体系。通过 DSC、扫描电镜形态观察和拉伸性能测试结果发现 ,当 HIPS- g- MA的含量低于 7.5 %时 ,共混物的相容性改善不明显 ,当其含量达到 7.5 %时 ,对共混物有明显的乳化作用 ,说明饱和的界面浓度在 7.5 %左右。HIPS- g- MA接枝共聚物在 HIPS( 30 ) / PC( 70 )共混物中的增容作用可能是酯交换反应原位生成的嵌段共聚物所致
Resumo:
The binary blends of polyamide 1010 (PA1010) with the high-impact polystyrene (HIPS)/maleic anhydride (MA) graft copolymer (HIPS-g-MA) and with HIPS were prepared using a wide composition range. Different blend morphologies were observed by scanning electron microscopy according to the nature and content of PA1010 used. Compared with the PA1010/HIPS binary blends, the domain sizes of dispersed-phase particles in PA1010/HIPS-g-MA blends were much smaller than that in PA1010/HIPS blends at the same compositions. It was found that the tensile properties of PA1010/HIPS-g-MA blends were obviously better than that of PA 1010/HIPS blends. Wide-angle xray diffraction analyses were performed to confirm that the number of hydrogen bonds in the PA1010 phase decreased in the blends of PA1010/HIPS-g-MA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/HIPS-g-MA blends.
Resumo:
The graft copolymerization of butyl acrylate onto poly(vinyl alcohol) with eerie ammonium nitrate as redox initiator in a aqueous medium has been investigated. The formation of graft copolymer was confirmed by means of IR, scanning electron microscopy (SEM), and wide-angle X-ray diffraction (WAXD). The percentage of mononer conversion and percentage of grafting varied with concentrations of initiator, nitric acid, monomer, macromolecular backbone (X-n = 1750, M = 80 000), reaction temperature and reaction time. Some inorganic salts and organic solvents have a great influence upon grafting. The reaction mechanism has been explored, and rate equations for the reaction are established. (C) 2000 John Wiley & Sons, Inc.
Resumo:
A functionalized high-density polyethylene (HDPE) with maleic anhydride (MAH) was prepared using a reactive extruding method. This copolymer was used as a compatibilizer of blends of polyamide 6 (PA6) and ultrahigh molecular weight polyethylene (UHMWPE). Morphologies were examined by a scanning electron microscope. It was found that the dimension of UHMWPE and HDPE domains in the PA6 matrix decreased dramatically, compared with that of the uncompatibilized blending system. The size of the UHMWPE domains was reduced from 35 mu m (PA6/UHMWPE, 80/20) to less than 4 mu m (PA6/UHMWPE/HDPE-g-MAH, 80/20/20). The tensile strength and Izod impact strength of PA6/UHMWPE/HDPE-g-MAH (80/20/20) were 1.5 and 1.6 times as high as those of PA6/UHMWPE: (80/20), respectively. This behavior could be attributed to chemical reactions between the anhydride groups of HDPE-g-MAH and the terminal amino groups of PA6 in PA6/UHMWPE/HDPE-g-MAH blends. Thermal analysis was performed to confirm that the above chemical reactions took place during the blending process. (C) 2000 John Wiley & Sons, Inc.
Resumo:
利用毛细管流变仪研究了线性低密度聚乙烯接枝丙烯酸 (LLDPE - g -AA)的流变行为。结果表明 ,在高的剪切应力下LLDPE -g -AA的表观粘度比纯LLDPE的小 ,并改进了树脂的流动性和加工性。LLDPE - g -AA的表观粘度随接枝丙烯酸含量的增加而降低 ,说明接枝到LLDPE分子链上的丙烯酸起到了内润滑剂的作用。利用Instron 112 1拉力机测试了LLDPE - g -AA的力学性能 ,结果表明其拉伸强度、杨氏模量和断裂伸长率与纯LLDPE相比没有明显的变化
Resumo:
应用实时BIA技术 ,探讨了蛋白A与小鼠免疫球蛋白G (MIgG)之间的相互作用 ,求出相互作用的动力学速率常数ka=5 0 7× 1 0 4 (mol/L) - 1 s- 1 ,kd=9 65× 1 0 - 5(s- 1 ) ,结合常数KA=5 2 5× 1 0 8(mol/L) - 1 .同时使用蛋白A固定的传感片用于MIgG浓度的检测 ,在 0 64~ 1 2mg/L浓度区间内 ,MIgG的响应值与其浓度有非常好的线性关系.
Resumo:
The compatibility and morphology of HIPS/PC and HIPS-g-GMA/PC blends were studied. The compatibility and morphology of HIPS/PC blends were characterized by DSC and SEM, respectively. The result of DSC shows that T-g of PS doesn't change with the blend composition, and T-g of PC decreases with the increase in weight fraction of HIPS, which indicates that the PC/HIPS blend is a partially miscible system. Results of SEM indicate that the decrease in T-g of PC results from PS interpenetrating into the phase of PC, and no change in T-g of PS results from PC not interpenetrating into the phase of PS. The copolymer of HIPS-g-GMA was prepared by reactive grafting method. The IR spectrum shows that GMA is grafted on the chain of HIPS. The compatibility and morphology of HIPS-gGMA (35)/PC (65) were studied by DSC and SEM. PC (65)/HEPS-g-GMA (35) blend exhibits reduced size of disperse phase, enhanced interface adhesion and lower T-g of PC phase as compared with the PC(65)/HIPS(35) blend. It implies that HIPS-g-GMA is an effective compatibilizer of the HIPS/PC blend.
Resumo:
通过 DSC、SEM、Molau试验和力学性能测试 ,研究了 PA6/ UHMWPE共混过程中 HDPE- g- MAH对体系的增容作用、力学性能及结晶行为的影响。结果表明 ,共混体系为热力学不相容体系 ;在熔融共混过程中 ,PA6和 HDPE- g- MAH发生化学反应 ,生成的接枝共聚物对 PA6/ UHMWPE体系有增容作用 ,分散性和界面形态以及力学性能明显改善 ;共混体系中两相的结晶行为亦发生变化 ,尼龙组分的熔融热焓明显下降
Resumo:
用反应挤出法在聚丙烯 (PP)分子链上接枝甲基丙烯酸环氧丙酯 (GMA) ,制备功能化聚丙烯 .重点讨论了单体浓度、引发剂浓度、反应温度及物料在螺杆中的停留时间等对接枝产物 PP-g-GMA的接枝率、接枝效率和熔体流动速率的影响 .结果表明 ,PP-g-GMA接枝率与加入的单体浓度成正比 ,与引发剂浓度无关 ,反应挤出的适宜温度窗口在 1 95~ 2 3 0℃之间 ,停留时间超过 1 min后接枝率与停留时间无关 ;PP-g-GMA的熔体流动速率与单体浓度成反比 ,与引发剂的用量成正比 ,在反应温度窗口内与反应挤出温度和物料停留时间关系不大 ;单体和引发剂的浓度、反应挤出温度及物料停留时间对 PP-g-GMA的接枝效率无显著影响 .