150 resultados para Precipitation (Chemistry)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysing the coordination state of copper ions in cuprate superconductors, it is found that the larger the energy splitting between d(x2-y2) and d(z2) orbitals of Cu or the higher the energy of the d(x2-y2) orbital, the higher the Tc. Thus, appropriate coordination structures and strong-field ligands must be chosen for expanding the energy splitting and increasing the energy of the d(x2-y2) orbital when searching for new high-Tc superconductors. Summarizing the experimental results of ESR and XPS, it is considered that the [Cu2+ - O open-square-box 2- - Cu3+] resonance exists in cuprate superconductors and the electron field breathing mode is present. Analysing the mechanism and the relationship between the coordination state of Cu and Tc, we consider that the two dimensional Cu-O planes are responsible for the superconductivity of YBa2Cu3O7-y.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of CH5O+ from two different reactions which are protonation of CH3OH from the above two pathways possess the same structures, CH3OH2+. The value of kinetic energy release for the metastable decomposition CH2OH3+-> CH2OH+ + H-2 determined from the experiment is in good agreement with that from theoretical calculations. The transition state of above reaction were disscussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the constant addition technique, the coprecipitation of lanthanum, gadolinium, and lutetium with aragonite in seawater was experimentally investigated at 25 degrees C. Their concentrations in aragonite overgrowths were determined by inductive coupled plasma mass spectrometer. All these lanthanides were strongly enriched in aragonite overgrowths. The amount of lanthanum, gadolinium, and lutetium incorporated into aragonite accounted for 57%-99%, 50%-89%, and 40%-91% of their initial total amount, respectively. With the increase of aragonite precipitation rate, more lanthanides were incorporated into aragonite while their relative fraction in aragonite overgrowths decreased consistently. It indicated that the coprecipitation of lanthanides with aragonite was controlled by the kinetics of aragonite precipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the DY105-12, 14cruise (RN DAYANG YIHAO, November 2003) on East Pacific Rise (EPR) 12-13 degrees N, the submarine hydrothermal activity was investigated and the CTD hydrocast was carried out at EPR12 degrees 39 ' N - 12 degrees 54 ' N. From the temperature anomalies and the concentrations of magnesium, chlorine, bromine in seawater samples, we discover that magnesium depletes 9.3%-22.4%, chlorine and bromine enrich 10.3%-28.7% and 10.7%-29.0% respectively relative to normal seawater at the stations which have chemistry anomalies, moreover temperature and chemistry anomalies are at the same layer. The depletion of magnesium in the plume may be caused by a fluid lacking of magnesium which rises after the hydrothermal fluid reaches the equilibrium with ambient seawater, the enrichment of chlorine and bromine might be the result of inputting later brine which is generated by phase separation due to hydrothermal activity. In addition, the Br/CI ratio in the abnormal layers at the survey area is identical to that in seawater, which implies that halite dissolution (or precipitation) occurs neither when the fluid is vented nor when hydrothermal fluid entraining ambient seawater rises to form plume. From the abnormal instance at E55 station, it is very possible that there might exist a new hydrothermal vent site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We dredged lots of Cenozoic basalts from areas covered from the northern sub-slope to the southern sub- slope of the South China Sea. Based on the study on mineral chemistry of clinopyroxenes in these Cenozoic hasalts, this paper indicates that pyroxenes are mostly enstatite and a few of augite, sahlite and Ca-rich pyroxene. Pyroxene microlite has higher content in, Ca, Ti and Fe than pyroxene phenocryst, it may reflect that the evolution trend of host magma of pyroxene is coincidence with that of alkali rock series. The depth of magma chambers which calculated from equilibrium temperatures and pressures between clinopyroxene and melt are as follows, that of magma of tephrite is about 49km, that of magma of trachybasalt is about 25km, and that of magma of basalt is about 15km. Correspondingly, Equilibrium temperatures( K) of three types rocks mentioned above gradually decrease from 1535 1498 to 1429 to 1369. By using discriminant plot which developed from pyroxene and alkali discriminant diagram of host rock, Cenozoic basalt from the South China Sea belongs to intraplate alkali basalt. The results suggest that alkali basalt series in the study area may be the products of continuous evolution of mantle plume, which result from some physical and chemistry process including partial melting and fractional crystallization of mantle plume during the course of its ascent to the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文利用ICP-AES、EPMA、X-ray衍射等测试技术以及聚类分析和因子分析等多种数理统计方法,系统地对中太平洋海区富钴结壳的元素地球化学特征、矿物组成和微观组构进行了研究,并探讨了其成因机制,获得以下主要认识: 1中太平洋海区富钴结壳类型多样,均为水成成因,其矿物相主要由锰矿物相、铁矿物相和非金属矿物相组成;富钴结壳壳层发育多种原生和次生构造类型。 2磷酸盐化作用不仅强烈改变富钴结壳元素初始含量,而且造成富钴结壳某些元素间的相关性发生改变,这些敏感型元素对可用于指示富钴结壳是否发生磷酸盐化。在不同水深段内,未磷酸盐化型富钴结壳的主要元素随经向、纬向的变化趋势相似,表明其受水体化学障、表面生产力和物质来源等环境参数控制;而随水深的变化则具有区域一致性,表明水体化学具有区域成层性。 3未磷酸盐化富钴结壳稀土元素含量和轻重稀土分馏程度随水深发生规律变化,这种变化不仅与它们在海洋中的含量和行为有关,也与海洋背景颗粒的吸附有关;铈(Ce)在富钴结壳中基本上呈4价,且动力学因素控制了其富集过程,因此Ce异常不能用于指示富钴结壳形成环境的氧化程度。 4基于富钴结壳微层呈锯齿状且同一微层生长速率不同,提出了富钴结壳在各种基底表面生长以及后继发育过程受固液界面双电层控制的发育模式。在富钴结壳整个发育过程中,经历了从贫氧环境向富氧环境的转变,但微环境则呈富氧-低氧过程的交替。 关键词: 富钴结壳;中太平洋;元素地球化学;界面双电层

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nine novel triazole compounds containing ester group were designed and synthesized. Their structures were confirmed by elemental, H-1 NMR and IR analyses, and optimized by means of DFT (Density Functional Theory) method at the B3LYP/6-31G* level. Based on the quantum-chemical calculation results and the Pearson coefficients between FA and quantumchemical parameters, V, LogP, MR and E-HOMO are shown to be the important relative factors which affect FA of the title compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precipitation is considered to be the primary resource limiting terrestrial biological activity in water-limited regions. Its overriding effect on the production of grassland is complex. In this paper, field data of 48 sites (including temperate meadow steppe,temperate steppe, temperate desert steppe and alpine meadow) were gathered from 31 published papers and monographs to analyze the relationship between above-ground net primary productivity (ANPP) and precipitation by the method of regression analysis. The results indicated that there was a great difference between spatial pattern and temporal pattern by which precipitation influenced grassland ANPP. Mean annual precipitation (MAP) was the main factor determining spatial distribution of grassland ANPP (r~2 = 0.61,P < 0.01); while temporally, no significant relationship was found between the variance of AN PP and inter-annual precipitation for the four types of grassland. However, after dividing annual precipitation into monthly value and taking time lag effect into account, the study found significant relationships between ANPP and precipitation. For the temperate meadow steppe, the key variable determining inter-annual change of ANPP was last August-May precipitation (r~2= 0.47, P = 0.01); for the temperate steppe, the key variable was July precipitation (r~2 = 0.36, P = 0.02); for the temperate desert steppe, the key variable was April-June precipitation (r~2 = 0.51, P <0.01); for the alpine meadow, the key variable was last September-May precipitation (r~2 = 0.29, P < 0.05). In comparison with analogous research, the study demonstrated that the key factor determining inter-annual changes of grassland ANPP was the cumulative precipitation in certain periods of that year or the previous year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Badain Jaran Desert lies on the Alashan Plateau in western Inner Mongolia. Because of huge dunes, permanent lakes and on the northern fringe of the Asian summer monsoon, the Badain Jaran Desert has been drawing attentions of many experts. And they have made great progress in dune’s geomorphology, botany in desert, paleoclimate change and other study areas. We analyzed environmental isotope and ion chemistry in lakes and groundwater of the desert and southeastern area, and collected some other evidences from 14C dating, fossils and archeology. According to chemical analysis, we discuss the difference spatial character of ion chemistry and environmental isotope in lakes and groundwater of the desert and adjacent. Contrasting with ion chemistry and isotope results in other arid area, we argue origin of groundwater and lakes in the desert area, and get a preliminary understanding of desert lakes’ evolution during Holocene. Some main conclusions were drawn as follows: 1. It has a obvious difference in hydrophysical parameters between lakes and groundwater in the desert and margin. 2. The results of ion analysis show that Na+ and Cl- are dominant in most lakes of the desert. Meanwhile, Na+ 、Cl- and HCO3- are dominant in groundwater of the desert and adjacent, and alsoMg2+、Ca2+、and NO3- have more percentage than in lakes. 3. Owing to different solubilities, the conten of main ions in water varies with the content of TDS. Whereas the content of TDS is over 100 g/L, the content of SO42-、HCO3-、Mg2+and Ca2+ in lakes descend. 4. The result of isotope analyzing indicate the lakes and groundwater in southeast desert have a similar vaporing trend with the groundwater in the southeast margin of the desert. It imply there would have some kind of contact between groundwater in margin and lakes of southeast desert. 5. Contrasting with isotope results of groundwater in other arid area, it show that the groundwater in the desert and Yabulai area should be phreatic water which have a low water table. Therefore, we conclude that the groundwater in southeast part of the desert and southern margin mainly are recharged by precipitation of local abundant rainfall and groundwater of low mountain of southern area. 6. And all of these evidences, which are different from salinity, the content of CO32- and geological data, show that the bigger northern lake group and southeastern lake group in the desert have different groundwater replenishing system because a fold belt lie between of the two group lakes and obstruct them in landform. and HCO3- 7. The 14C dating results of fossil and lacustrine deposits show that there maybe have a wider range of shoreline during early and middle Holocene than today. 8. By the discovery and study of some pieces of pottery and fine stoneware, we preliminary conclude that there maybe have some certain amount of early human activities in the Badain Jaran Desert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of the high resolution, stalagmite laminae can play an important role in the paleoclimate reconstructions. However, few investigations for the formation mechanisms of stalagmite lamilae have been done. Based on two-year observation on calcite growth rate at the drip sites, three-year monitoring of hydrodynamics, physics and chemistry of drip waters at different drip sites and the surrounding environments inside and outside the Beijing Shihua Cave, the seasonal variations of calcite growth rate are revealed and the results can be concluded as follows: 1. The drip waters inside the Cave are mostly sourced from the summer rain, and its minimal response-time to the atmospheric precipitation is less than one day. There are three types of response relationships between the precipitation and the drip rate variations: rapid response type, time-lag response type and stable response type. For rapid response type, the drip discharge is recharged through the flow routes along intensive fractures and interconnectivities; for time-lag response type, the drip discharge is recharged by double-porosity system composed of a high conductivity, low storage capability conduit network and a low-conductivity high-storage capability rock matrix under variable boundary conditions; for stable response type, the drip discharge is mainly recharged by seepage flow and base flow. 2. The observation shows that, inside the Cave, the growth rate of calcite is generally lower in rainy seasons and higher in dry seasons. During the rainy seasons, the drip water is characterized by a lower pH value, higher [Ca2+], [Mg2+], [SO42-] and electrical conductivity (EC) values. According to the calculations of saturation index of calcite (SIc), pCO2 of the drip water, as well as the synthetical analysis of other possible factors, the calcite growth rate is found to be principally influenced by the drip water saturation index of calcite (SIc). And the drip rate and pCO2 in the drip water and in the cave air play the secondly important roles in this process. The recharge mode of heavy rainfall events in the rainy seasons should probably be the main driving force that controls the physicochemical properties and calcite sediment of the drip waters. The abrupt decrease of sedimentary rate and the sharp peak of DOC in drip water in the rainy season probably forms the thin opaque (luminescent under ultraviolet radiation) layers observed in the stalagmites, whereas the relatively higher sedimentary rate in the dry seasons may be responsible for the thicker bright layers. The investigation elucidated here preliminarily reveals the formation mechanism of the stalagmite laminae in Beijing Shihua Cave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization of Platinum Group Elements (PGE) has been applied to earth, space and environmental sciences. However, all these applications are based on a basic prerequisite, i.e. their concentration or ratio in the research objects can be accurately and precisely determined. In fact, development in these related studies is a great challenge to the analytical chemistry of the PGE because their content in the geological sample (non-mineralized) is often extremely low, range from ppt (10~(-12)g/g) to ppt (10~(-9)g/g). Their distribution is highly heterogeneous, usually concentrating in single particle or phase. Therefore, the accurate determination of these elements remains a problem in analytical chemistry and it obstructs the research on geochemistry of PGE. A great effort has been made in scientific community to reliable determining of very low amounts of PGE, which has been focused on to reduce the level of background in used reagents and to solve probable heterogeneity of PGE in samples. Undoubtedly, the fire-assay method is one of the best ways for solving the heterogeneity, as a large amount of sample weight (10-50g) can be hold. This page is mainly aimed at development of the methodology on separation, concentration and determination of the ultra-trace PGE in the rock and peat samples, and then they are applied to study the trace of PGE in ophiolite suite, in Kudi, West Kunlun and Tunguska explosion in 1908. The achievements of the study are summarized as follows: 1. A PGE lab is established in the Laboratory of Lithosphere Tectonic Evolution, IGG, CAS. 2. A modified method of determination of PGE in geological samples using NiS Fire-Assay with inductively coupled plasma-mass spectrometry (ICP-MS) is set up. The technical improvements are made as following: (1) investigating the level of background in used reagents, and finding the contents of Au, Pt and Pd in carbonyl nickel powder are 30, 0.6 and 0.6ng/g, respectively and 0.35, 7.5 and 6.4ng, respectively in other flux, and the contents of Ru, Rh, Os in whole reagents used are very low (below or near the detection limits of ICP-MS); (2) measuring the recoveries of PGE using different collector (Ni+S) and finding 1.5g of carbonyl nickel is effective for recovering the PGE for 15g samples (recoveries are more than 90%), reducing the inherent blank value due to impurities reagents; (3) direct dissolving nickel button in Teflon bomb and using Te-precipitation, so reducing the loss of PGE during preconcentration process and improving the recoveries of PGE (above 60% for Os and 93.6-106.3% for other PGE, using 2g carbonyl nickel); (4) simplifying the procedure of analyzing Osmium; (5)method detection limits are 8.6, 4.8, 43, 2.4, 82pg/g for 15g sample size ofRu, Rh, Pd, Ir, Pt, respectively. 3. An analytical method is set up to determine the content of ultra-trace PGE in peat samples. The method detection limits are 0.06, 0.1, 0.001, 0.001 and 0.002ng/mL for Ru, Rh, Pd, Ir and Pt, respectively. 4. Distinct anomaly of Pd and Os are firstly found in the peat sampling near the Tunguska explosion site, using the analytical method. 5. Applying the method to the study on the origin of Tunguska explosion and making the following conclusions: (1) these excess elements were likely resulted from the Tunguska Cosmic Body (TCB) explosion of 1908. (2) The Tunguska explosive body was composed of materials (solid components) similar to C1 chondrite, and, most probably, a cometary object, which weighed more than 10~7 tons and had a radius of more than 126 m. 6. The analysis method about ultra-trace PGE in rock samples is successfully used in the study on the characteristic of PGE in Kudi ophiolite suite and the following conclusions are made: (1) The difference of the mantle normalization of PGE patterns between dunite, harzburgite and lherzolite in Kudi indicates that they are residual of multi-stage partial melt of the mantle. Their depletion of Ir at a similar degree probably indicates the existence of an upper mantle depleted Ir. (2) With the evolution of the magma produced by the partial melt of the mantle, strong differentiation has been shown between IPGE and PPGE; and the differentiation from pyroxenite to basalt would have been more and more distinct. (3) The magma forming ophiolite in Kudi probably suffered S-saturation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow chemistry research helps to found the basis of studying ice cores. Samples of fresh snow and snow pits were collected from East Rongbuk Glacier on the north slope of Mt. Qomolangma during October, 2002. Major soluble ions (Na~+, NH_4~+, K~+, Mg~(2+), Ca~(2+), Cl~-, NO_3~- and SO_4~(2-)) andδ~(18)O were detected for analysis. Source analysis showed that major sources contributing to the snow chemistry in Mt. Qomolangma region are remote Asian dust and salt lake dust, sea-salt aerosols from Indian monsoon, local rock-mineral dust, human activities and natural atmospheric procedures. Principal factor analysis indicated that high-concentration group was dominated by continental dust with little oceanic source, indicating continental or local precipitation, while the low group dominated by oceanic aerosols indicated oceanic precipitation. Local mineral dust was a minor a source characterized mainly by Ca~(2+), Mg~(2+) contribution. Ammonia related mainly with continental dusts and nitrogen-circulation processes in the atmosphere, it also had a peculiar source should be seasonal agriculture activities in the south Asia. Nitrate showed bad correlations with other ions for its special chemical characteristics. δ~(18)O and major soluble ions displayed obvious seasonal variations. The summer precipitation had very low ion loadings and relatively lower heavy oxygen isotope from the Indian Ocean with occasionally ion peaks formed by local evaporation. While the winter and spring precipitation had high ion loadings and δ~(18)O value for the great amount of continental dust and evaporated vapors. Frequent fluctuations of δ~(18)O and ion concentration occur during the transitional period, indicating alternated precipitations by various air mass types. Ion concentration in snow from the Qomolangma region is comparable with from the Antactica, representing relatively pure background of atmospheric environment on earth. While the high concentration is close to the glaciers' located near the major sources of Asian dust. Compared with the snow chemistry of South Slope of Mt. Qomolangma, the North Slope has lower sea-salt ion concentration during summer monsoon and higher concentration of all major ions during pre- and post-monsoon period due to it's special geophysical location.