180 resultados para Permeability Compaction
Resumo:
A new synthetic route to 2,2',3,3'-BTDA (where BTDA is benzophenonetetracarboxylic dianhydride), an isomer of 2,3',3',4'-BTDA and 3,3',4,4'-BTDA, is described. Single-crystal X-ray diffraction analysis of 2,2',3,3'-BTDA has shown that this dianhydride has a bent and noncoplanar structure. The polymerizations of 2,2',3,3'-BTDA with 4,4'-oxydianiline (ODA) and 4,4'-bis(4-aminophenoxy)benzene (TPEQ) have been investigated with a conventional two-step process. A trend of cyclic oligomers forming in the reaction of 2,2',3,3'-BTDA and ODA has been found and characterized with IR, NMR, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and elemental analyses. Films based on 2,2',3,3'-BTDA/TPEQ can only be obtained from corresponding polyimide (PI) solutions prepared by chemical imidization because those from their polyamic acids by thermal imidization are brittle. PIS from 2,2',3,3'-BTDA have lower inherent viscosities and worse thermal and mechanical properties than the corresponding 2,3',3',4'-BTDA- and 3,3',4,4'-BTDA-based PIs. PIs from 2,2',3,3'-BTDA and 2,3',3',4'-BTDA are amorphous, whereas those from 3,3',4,4'-BTDA have some crystallinity, according to wide-angle X-ray diffraction.
Resumo:
A series of new composite proton exchange membranes for direct methanol fuel cells (DMFCs) based on poly (vinyl alcohol) (PVA), phosphotungstic acid (PWA) and silica were prepared. The highest proton conductivity (a) of these membranes is 0.017 S/cm at ambient temperature. The methanol permeability (D) of these composite membranes ranges from 10(-7) to 10(-8) cm(2)/S. From the ratios of sigma/D, it was found that the optimal weight composition of the PVA/PWA/SiO2 membrane is PVA/PWA/SiO2=0.40:0.40:0.20 wt. Infrared (IR) spectrographic measurements indicate that the Keggin structure characteristics of the PW12O403- anion is present in the composite membranes. Cyclic voltammetry shows that the electrochemical stability window of the complex membrane is from -0.5 to 1.5 V vs. Ag/AgCl electrode. The results of differential scanning calorimetry (DSC) show that silica can improve the thermal stability of the complexes and the single Tg of the membrane indicates that the membrane is homogeneous. The complexes behave as X-ray amorphous.
Resumo:
3,3',4,4'-Diphenylthioether dianhydride (4,4'-TDPA), 2,3,3',4'-diphenylthioether dianhydride (3,4'-TDPA), and 2,2',3,3-diphenylthioether dianhydride (3,3'TDPA) were synthesized from 3-chlorophthalic anhydride and 4-chlorophthalic anhydride. A series of polyimides derived from the isomeric diphenylthioether dianhydrides with several diamines were prepared. The properties, such as the solubility, thermal and mechanical behavior, dynamic mechanical behavior, wide-angle X-ray diffraction, and permeability to some gases, were compared among the isomeric polyimides. Both 3,3'-TDPA- and 3,4-TDPA-based polyimides had good solubility in polar aprotic solvents and phenols. The 5% weight loss temperatures of all the obtained polyimides was near 500 degrees C in nitrogen. The glass-transition temperatures decreased according to the order of the polyimides based on 3,3'-TDPA, 3,4'-TDPA, and 4,4'-TDPA. The 3,4'-TDPA-based polyimides had the best permeability and lowest permselectivity, whereas the 4,4'-TDPA-based polyimides had the highest permselectivity and the lowest permeability of the three isomers. Furthermore, the rheological properties of thermoplastic polyimide resins based on the isomeric dipbenylthioether dianhydrides were investigated, and they showed that polyimide 3,4'-TDPA/4,4-oxydianiline had the lowest melt viscosity among the isomers; this indicated that the melt processibility had been greatly improved.
Resumo:
A new fluorinated diamine monomer, [1,4-bis(4-amino-3-trifluoromethylphenoxy)benzene (2)], and a known isomeric analog 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (3) were synthesized. A series of organosoluble polyimides Ia-d and IIa were prepared from the diamines (2, 3) and dianhydrides (a-d) by a high-temperature one-step method. The effects of the trifluoromethyl substituents on the properties of polyimides were evaluated through the study of their soluble, thermal, optical, and gas permeability properties. Polyimides (Ia-d) had glass transition temperatures between 229 and 279 degrees C, and the temperatures at 5% weight loss ranged from 510 to 533 degrees C under nitrogen. These polyimides could be cast into flexible and tough membranes from DMAc solutions. The membranes had tensile strengths in the range of 137-169 MPa, tensile modulus in the range of 1.6-2.2 GPa and elongations at break from 11% to 14%. The polyimide la with trifluoromethyl groups ortho to the imide nitrogen exhibited enhanced gas permeability, solubility, transparency, and thermal stability compared with the isomeric polyimide IIa with the CF3 group meta to the imide nitrogen.
Resumo:
Ibuprofen is a well-known nonsteroidal anti-inflammatory drug, which can interact with lipid membranes. In this paper, the interaction of ibuprofen with bilayer lipid membrane was studied by UV-vis spectroscopy, cyclic voltammetry and AC impedance spectroscopy. UV-vis spectroscopy data indicated directly that ibuprofen could interact with lipid vesicles. In electrochemical experiments, ibuprofen displayed a biphasic behavior on bilayer lipid membrane supported on a glassy carbon electrode. It could stabilize the lipid membrane in low concentration, while it induced defects formation, even removed off bilayer lipid membrane from the surface of the electrode with increasing concentration. The mechanism about the interaction between ibuprofen and supported bilayer lipid membrane was discussed.
Resumo:
Based on the multidomain structure of Pseudomonas aeruginosa exotoxin A, a fusion protein termed rPEA has been constructed, which is expected to serve as a gene carrier in vitro. The expression and purification of rPEA are described. The basal properties of rPEA as a gene carrier are evaluated by investigating its interaction with plasmid DNA and mimic biomembrane by surface plasmon resonance (SPR) and electrochemical methods. rPEA is proved to be able to bind with plasmid DNA with high affinity. It can also interact with lipid membrane and increase permeability of the membrane, so the probe molecules can easily reach the gold surface and exhibit the electrochemical response.
Resumo:
The synthesis of nanocrystalline W-type hexaferrites Ba(CoxZn1-x)(2)Fe16O27 powders by sol-gel auto-combustion method has been investigated. The thermal decomposition process of dried gel was studied by thermogravimetry (TG), differential thermal analysis (DTA) and infrared spectra (IR). The structural and magnetic properties of resultant particles were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). The results reveal that the dried gel exhibits auto-combustion behavior. After combustion, pure nanocrystalline W-type hexaferrite phase starts to appear at the calcination temperature of 800 degrees C. The crystallinity and the grain size increase at higher temperature. The saturation magnetization and coercivity clearly depend on calcination temperature and Co content X.
Resumo:
The resin transfer molding has gained popularity in the preparation of fiber-reinforced polymer-matrix composites because of its high efficiency and low pollution. The non-uniform inter-tow and intra-tow flows are regarded as the reason of void formation in RTM. According to the process characteristics, the axisymmetric model was developed to study the interaction between the flow in the inter-tow space and that in the intra-tow space. The flow behavior inside the fiber tows was formulated using Brinkman's equation, while that in the open space around the fiber tows was formulated by Stokes' equation. The volume of fluid (VOF) method was applied to track the flow front, and the effects of filling velocity, resin viscosity, inter-tow dimension and intra-tow permeability on fluid pressure and flow front were analyzed. The results show that the flow front difference between the inter-tow and intra-tow becomes larger with the decrease of intra-tow permeability, as well as the increase of filling velocity and inter-tow dimension.
Resumo:
The four AB(2) monomers, N-[3- or 4-bis(4-hydroxyphenyl)toluoyl]-4-chlorophthalimide and N-{3- or 4-[1,1-bis(4-hydroxyphenyl)]ethylphenyl}-4-chlorophthalimides, were prepared and used for synthesis of hyperbranched poly(ether imide)s bearing hydroxyl end groups. These hyperbranched poly(ether imide)s had moderate molecular weights with broad distributions and showed glass-transition temperatures (Tgs) between 177 and 230 degreesC. The thermogravimetric analytic measurement revealed the decomposition temperature at 5% weight-loss temperatures (T-d(5%)) ranging from 240 to 281 degreesC. Analysis using H-1 NMR spectroscopy revealed the four types of hyperbranched poly(ether imide)s to have similar degrees of branching (ca. 60%). These polymers were modified by acylation or nucleophilic substitution reaction at the hydroxyl end groups. The conversion effectiveness depended on the type of modification reaction, modifier, and reaction conditions. The thermal stability and solubility of hyperbranched poly(ether imide)s were improved by the modification of the end groups.
Resumo:
The synthesis and characterization of hyperbranched aromatic poly(ester-imide)s are described. A variety of AB(2) monomers, N-[3- or 4-bis(4-acetoxyphenyl)toluoyl]-4-carboxyl-phthalimide and N-{3- or 4-[1,1-bis(4-acetooxyphenyl)]ethylphenyl}-4-carboxy phthalimides were prepared starting from condensation of nitrobenzaldehydes or nitroacetophenones with phenol and used for synthesis of hyperbranched poly(ester-imide)s containing terminal acetyl groups by transesterification reaction. These hyperbranched poly(ester-imide)s were produced with weight-average molecular weight of up to 6.87 g/mol. Analysis of H-1 NMR and C-13 NMR spectroscopy revealed the structure of the four hyperbranched poly(ester-imide)s. These hyperbranched poly(ester-imide)s exhibited excellent solubility in a variety of solvents such as N,N-dimethylacetamide, dimethyl sulfoxide, and tetrahydrofuran and showed glass-transition temperatures between 217 and 255 degreesC. The thermogravimetric analytic measurement revealed the decomposition temperature at 10% weight-loss temperature (T-d(10)) ranging from 365 to 416 degreesC in nitrogen.
Resumo:
Chitosan has shown its potential as a non-viral gene carrier and an adsorption enhancer for subsequent drug delivery to cells. These results showed that chitosan acted as a membrane perturbant. However, there is currently a lack of direct experimental evidence of this membrane perturbance effect, especially for chitosans with low molecular weight (LMW). In this report, the interaction between a lipid (didodecyl dimethylammonium bromide; DDAB) bilayer and chitosan with molecular weight (MW) of 4200 Da was studied with cyclic voltammetry (CV), electrochemical impedance spectroscopy and surface plasmon resonance (SPR). A lipid bilayer was formed by-fusion of oppositely charged lipid vesicles on a mercaptopropionic acid (MPA)-modified gold surface to mimic a cell membrane. The results showed that the LMW chitosan could disrupt the lipid bilayer, and the effect seemed,to be in a concentration-dependent manner.
Resumo:
Adsorption of a monolayer of didecanoyl-L-alpha-phosphatidylcholine (DDPC) from dispersions of small unilamellar vesicles onto hydrophobic surfaces was investigated by mean of cyclic voltammetry and impedance spectroscopy. The hydrophobic surfaces were self-assembled monolayers of 2-mereapto-3-n-octylthiophene (MOT) on gold. One characteristic of the MOT monolayer is its permeability to organic molecules in aqueous solution, thus providing a more energetically favorable hydrophobic surface for the addition of phospholipid vesicles. The kinetics of the lipid monolayer formation were followed by measuring the time-dependent interfacial capacitance. Unusual values of thickness and capacitance of the MOT/ DDPC bilayers were observed. An interdigitating conformation of the bilayer structure was proposed to interpret the experimental results, The horseradish peroxidase reconstituted into the bilayer demonstrated the expected protein activity, showing practical use in research and in biosensor application.
Resumo:
Transparent poly(ethyl acrylate) (PEA)/bentonite nanocomposites containing intercalated-exfoliated combinatory structures of clay were synthesized by in situ emulsion polymerizations in aqueous dispersions containing bentonite. The samples for characterization were prepared through direct-forming films of the resulting emulsions without coagulation and separation. An examination with X-ray diffraction and transmission electron microscopy showed that intercalated and exfoliated structures of clay coexisted in the PEA/bentonite nanocomposites. The measurements of mechanical properties showed that PEA properties were greatly improved, with the tensile strength and modulus increasing from 0.65 and 0.24 to 11.16 and 88.41 MPa, respectively. Dynamic mechanical analysis revealed a very marked improvement of the storage modulus above the glass-transition temperature. In addition, because of the uniform dispersion of silicate layers in the PEA matrix, the barrier properties of the materials were dramatically improved. The permeability coefficient of water vapor decreased from 30.8 x 10(-6) to 8.3 x 10(-6) g cm/cm(2)s cmHg. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Gas transport of H-2, CO2, O-2, N-2, and CH4 in a series of cardo polyarylethers were examined over a temperature range of 30 similar to 100 degreesC. These polymers include three poly(aryletherketone)s, two poly(arylethersulfone)s, and one poly(aryletherketoneketone). It was found that the large length/diameter ratio of the polymer repeat unit for cardo polyaryletherketoneketone (PEKK-C) and strong intermolecular interaction in hydrogen-bonded polyarylethersulfone (PES-H) and hydrogen-bonded polyaryletherketone (PEK-H) resulted in a considerable increase in gas permselectivity. Alkyl-substituted polyaryletherketone (PEK-A), bearing a pendant bulky propyl group on the cardo ring, simultaneously exhibited 62.5% higher H-2 permeability and 59.8% higher H-2/N-2 permselectivity than unmodified poly(aryletherketone) (PEK-C). The causes of the trend were interpreted in terms of chain packing density, segmental motion ability, steric factor, and intermolecular interaction of polymers, together with gas kinetic diameter and critical temperature data.
Resumo:
A series of cardo polyaryletherketones and polyaryletersulfones containing alkyl substituents of a different kind, number and volume were synthesized from bis(4-nitrophenyl)ketone or bis(4-fluorophenyl)sulfone with various alkyl substituted phenolphthaleins by polycondensation using K2CO3 as catalyst. Their chemical and aggregation structures were confirmed by FT-IR, H-1-NMR and WAXD. The resulting polymers were soluble in a variety of common polar solvents and, transparent, colorless, and tough films could be easily cast from 1,1,2-trichluoroethane solution. Their tensile strength, elongation at break and tensile modulis were in the range of 70.5 similar to 97.1MPa, 4.49%similar to7.81%, and 1.69 similar to2.27GPa, respectively. The prepared polymers had reasonably high glass transition temperatures at 207 to 269 degreesC, and showed fairly good thermal stability with 5% thermal decomposition loss above 410 degreesC.