162 resultados para Parabrachial nucleus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first-order perturbations of the energy levels of a hydrogen atom in central internal gravitational field are investigated. The internal gravitational field is produced by the mass of the atomic nucleus. The energy shifts are calculated for the relativistic 1S, 2S, 2P, 3S, 3P, 3D, 4S, and 4P levels with Schwarzschild metric. The calculated results show that the gravitational corrections are sensitive to the total angular momentum quantum number.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleus Cs-126 was investigated by means of in-beam gamma-ray spectroscopy techniques using the Nordball detector system at the Niels Bohr Institute. Excited states of Cs-126 were populated via the Cd-116(N-14, 4n)Cs-126 reaction at a beam energy of 65 MeV. The Cs-126 level scheme was considerably extended, especially at negative parity and about 40 new levels and 70 new transitions were added into the level scheme. The previously reported negative-parity rotational bands, built on pi g(7/2)circle times nu h(11/2),pi d(5/2)circle times nu h(11/2),pi h(11/2)circle times nu g(7/2), and pi h(11/2)circle times nu d(5/2) configurations, have been extended and evolve into bands involving rotationally aligned (pi h(11/2))(2) and (nu h(11/2))(2) quasiparticles. Two new rotational bands have been tentatively assigned the pi h(11/2)circle times nu s(1/2) and pi g(9/2)circle times nu h(11/2) configurations, respectively

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-spin states in Ce-139 have been populated using the Te-130(C-12, 3n) reaction at beam energy of 50MeV. The level scheme of Ce-139 has been revised and extended greatly up to E=5765.0keV. The level structure of Ce-139 shows typical characteristics of spherical nucleus, and the high-spin states were formed by the excitations of valence nucleons. Energies of the yrast and near yrast high-spin states in Ce-139 have been calculated by the empirical shell model, and the multi-quasiparticle nature of high-spin excited states has been discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dinuclear system model has been further developed by introducing the barrier distribution function method in the process of heavy-ion capture and fusion to synthesize superheavy nuclei. The capture of two colliding nuclei, formation and de-excitation process of compound nucleus are decribed by using empirical coupled channel model, solving master equation numerically and statistical evaporation model, respectively. Within the framework of the dinuclear system model, the fusion-evaporation excitation functions of the systems Ca-48(Am-243, 3n-5n) (288-286)115 and Ca-48(Cm-248, 3n-5n)(293-291)116 are calculated, which are used for synthesizing new superheavy nuclei at Dubna in recent years. Isotopic dependence of production cross sections with double magic nucleus Ca-48 bombarding actinide targets U, Np, Pu, Am, Cm to synthesize superheavy nuclei with charged numbers Z=112-116 is analyzed systematically. Based on these analysis, the optimal projectile-target combination and the optimal excitation energy are proposed. It is shown that shell correction energy and neutron separation energy will play an important role on the isotopic dependence of production cross sections of superheavy nuclei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the average property of the isospin effect of reaction induced by halo-neutron nuclei He-8 and He-10 in the intermediate energy heavy ion collisions using the isospin-dependent quantum molecular dynamics model (IQMD). This study is based on the extended neutron density distribution for the halo-neutron nuclei, which includes the average property of the isospin effect-of reaction mechanism and loose inner structure. The extended neutron density distribution brings an important isospin. effect into the average property of reaction mechanism because the interaction potential and nucleon-nucleon(N-N) cross section in IQMD model depend sensitively on the density distribution of colliding system. In order to see clearly the average properties of reaction mechanism induced by halo-neutron nuclei we also compare the results for the neutron-halo colliding systems with those for the corresponding stable colliding systems under the same incident channel condition. We found that the extended density distribution for the neutron-halo projectile brings an important isospin effect to the reaction mechanism, which leads to the decrease of nuclear stopping R, yet induces obvious increase of the neutron-proton ratio of nucleon emissions and isospin fractionation ratio for all beam energies studied in this work, compared to the corresponding stable colliding system. In this case, nuclear stopping, the neutron-proton ratio of nucleon emissions and isospin fractionation ratio induced by halo-neutron nuclei can be used as possible probes for studying the average property of the isospin effect of reaction mechanism and extracting the information of symmetry potential and in-medium N-N cross section by the neutron-halo nuclei in heavy ion collisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusion barriers have been calculated for different orientations of the axial symmetry axis of deformed projectile-and target-nucleus. Using the concept of dinuclear system, considering the strong competition between fusion and quasifission processes, by solving the master equation numerically to calculate the fusion probability of superheavy nuclei, we have estimated the dependence of the fusion probabilities for Ge-76 + Pb-208 and Ca-48 + Pu-244 on the orientation angles of the symmetry axis of projectile-and target-nucleus, which shows that belly-belly is the most favorable orientation for synthesizing superheavy nuclei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In terms of the isospin-dependent quantum molecular dynamics model (IQMD), important isospin effect in the halo-neutron nucleus induced reaction mechanism is. investigated, and consequently, the symmetrical potential form is extracted in the intermediate energy heavy ion collision. Because the interactive potential and in-medium nucleon-nucleon (N-N) cross section in the IQMD model sensitively depend on the density distribution of the colliding system, this type of study is much more based on the extended density distribution with a looser inner nuclear structure of the halo-neutron nucleus. Such a density distribution includes averaged characteristics of the isospin effect of the reaction mechanism and the looser inner nuclear structure. In order to understand clearly the isospin effect of the halo-neutron nucleus induced reaction mechanism, the effects caused by the neutron-halo nucleus and by the stable nucleus with the same mass are compared under the same condition of the incident channel. It is found that in the concerned beam energy region, the ratio of the emitted neutrons and protons and the ratio of the isospin fractionations in the neutron-halo nucleus case are considerably larger than those in the stable nucleus case. Therefore, the information of the symmetry potential in the heavy ion collision can be extracted through such a procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the momentum- and isospin-dependent Boltmann-Uehling-Uhlenbeck (BUU) model, we investigate the transverse flow and balance energy in two isotopic colliding systems Ca-48+Fe-58 and Cr-48+Ni-58 by adopting different symmetry potentials. By comparing the results between the two colliding systems, we find that the difference between the balance energies of two isotopic systems can be considered as a sensitive probe to the density dependence of symmetry energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A density-dependent delta interaction (DDDI) is proposed in the formalism of BCS-type pairing correlations for exotic nuclei whose Fermi surfaces are close to the threshold of the unbound state. It provides the possibility to pick up those states whose wave functions are concentrated in the nuclear region by making the pairing matrix elements state dependent. On this basis, the energy level distributions, occupations, and ground-state properties are self-consistently studied in the RMF theory with deformation. Calculations are performed for the Sr isotopic chain. A good description of the total energy per nucleon, deformations, two-neutron separation energies and isotope shift from the proton drip line to the neutron drip line is found. Especially, by comparing the single-particle structure from the DDDI pairing interaction with that from the constant pairing interaction for a very neutron-rich nucleus it is demonstrated that the DDDI pairing method improves the treatment of the pairing in the continuum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proton-rich isotope Sm-133 was produced via the fusion evaporation reaction Ca-40 + Ru-96. Its beta-delayed proton decay was studied by p-gamma coincidence in combination with a He-jet tape transport system, and half-lives, proton energy spectra, gamma-transitions following the proton emission, as well as beta-delayed proton branching ratios to the low-lying states in the grand-daughter nucleus were determined. Comparing the observed beta-delayed proton branching ratios with statistical model calculations, the best agreement is found assuming that only one level with the spin of 3/2 in Sm-133 decays or two levels with the spins of 1/2 and 5/2 decay with similar half-lives. The configuration-constrained nuclear potential energy surfaces of Sm-133 were calculated using the Woods-Saxon-Strutinsky method, which suggests a 1/2-ground state and a 5/2(+) isomer with an excitation energy of 120 keV. Therefore, the simple(EC+beta(+)) decay scheme of Sm-133 in Eur. Phys. J.A 11,277(2001) has been revised. In addition, our previous experimental data on the beta-delayed proton decay of Yb-149 reported in Eur. Phys. J. A 12,1 ( 2 0 0 1) was also analyzed using the same method. The spin-parity of Yb-149 is suggested to be 1/2(-).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The barrier distribution function method is introduced in the dinuclear system model in the calculation of the transmission probability, which is the first stage in the synthesis of superheavy nuclei. Dynamical deformation and averaging collision orientations are considered in the calculation of the fusion probability by solving master equation numerically. Survival probability with respect to xn evaporation channel (x = 1-5) in the de-excitation process of the thermal compound nucleus is calculated, in which the level density of the Fermi-gas model is used. Production cross sections of a series of superheavy nuclei formed in the reactions taken magic and deformed nuclei as target in Ca-48 induced reactions are studied systematically. The calculated results are in good agreement with available experimental data. Isotopic dependence of the production cross sections in the reactions Ca-48 + Pu is analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of the improved quantum molecular dynamics model, the incident energy dependent dynamical fusion potential barriers for heavy nucleus reaction systems are investigated. It is found that with decrease of incident energy the lowest dynamic barrier is obtained which approaches to the adiabatic static barrier and with increase of the incident energy the dynamic barrier goes up to the diabatic static barrier. Based on the dynamical study a microscopic understanding of the extra-push in fusion reactions of heavy systems and a new explanation of tunneling process for the fusion at the incident energy below the static and above the lowest dynamic barrier are presented. In order to understand the energy dependence of the dynamical barrier we also pay a great attention to study the neck formation and shape deformation during the dynamic lowering of the barrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties of nuclei belonging to the newly observed a-decay chain starting from (265)Bh have been studied. The axially deformed relativistic mean-field calculation with the force NL-Z2 has been performed in the blocked BCS approximation. Some ground state properties such as binding energies, deformations, spins, and parities, as well as Q-values of the alpha-decay for this decay chain have been calculated and compared with known experimental data. Good agreement is found. The single-particle spectrum of the nucleus (265)Bh is studied and some new magic numbers are found, while the magnitudes of the shell gaps in superheavy nuclei are much smaller than those of nuclei before the actinium region, and the Fermi surfaces are close to the continuum. Thus the superheavy nuclei are usually not stable. The alpha-decay lifetimes in the (265)Bh decay chain are evaluated by different formulae, and compared with experimental data. The methods which give good agreement with the data are selected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It was based on the comparisons of the variance properties of fragment multiplicities FM's and nuclear stoppings R's for the neutron-halo colliding system with those of FZ's and R's for the proton-halo colliding system with the increases of beam energy in more detail, the closely correlations between the reaction mechanism and the inner structures of halo-nuclei is found. From above comparisons it is found that the variance properties of fragment multiplicities and nuclear stopping with the increases of beam energy are quite different for the neutron-halo and proton-halo colliding systems, such as the effects of loosely bound neutron-halo structure on the fragment multiplicities and nuclear stopping are obviously larger than those for the proton-halo colliding system. This is due to that the structures of halo-neutron nucleus Li-11 is more loosely than that of the proton-halo nucleus Al-23 in this paper. In this case, the fragment multiplicity and nuclear stopping of halo nuclei may be used as a possible probe for studying the reaction mechanism and the correlation between the reaction mechanism and the inner structure of halo-nuclei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied systematically the reaction dynamics induced by neutron-halo nuclei and proton-halo nuclei within the isospin dependent quantum molecular dynamics, such as the effects of loose bound halo-nuclei on the fragmentation reaction and momentum dissipation for different colliding systems with different beam energies and different impact parameters. In order to emphasize the roles of neutron-halo nucleus B-19 and proton-halo nucleus Al-23 on the reaction dynamics we also calculated the the reaction dynamics induced by the stable nuclei F-19 and Na-23 with equal mass under identical incident channel conditions. Based on the comparison of results of reaction dynamics induced by halo-nucleus colliding systems and stable nucleus collidinmg systems we found that the roles of loose bound halo-nucleus structure on the fragmentation multiplicity and nuclear stopping (momentum dissipation) are important for all of colliding systems with different beam energies and minor impact parameters, such as, the loose bound halo-nuclei structure increases the fragmentation multiplicity, but reduces the nuclear stopping.