167 resultados para Oocyte morphological classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orthogonal neighborhood-preserving projection (ONPP) is a recently developed orthogonal linear algorithm for overcoming the out-of-sample problem existing in the well-known manifold learning algorithm, i.e., locally linear embedding. It has been shown that ONPP is a strong analyzer of high-dimensional data. However, when applied to classification problems in a supervised setting, ONPP only focuses on the intraclass geometrical information while ignores the interaction of samples from different classes. To enhance the performance of ONPP in classification, a new algorithm termed discriminative ONPP (DONPP) is proposed in this paper. DONPP 1) takes into account both intraclass and interclass geometries; 2) considers the neighborhood information of interclass relationships; and 3) follows the orthogonality property of ONPP. Furthermore, DONPP is extended to the semisupervised case, i.e., semisupervised DONPP (SDONPP). This uses unlabeled samples to improve the classification accuracy of the original DONPP. Empirical studies demonstrate the effectiveness of both DONPP and SDONPP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspired by human visual cognition mechanism, this paper first presents a scene classification method based on an improved standard model feature. Compared with state-of-the-art efforts in scene classification, the newly proposed method is more robust, more selective, and of lower complexity. These advantages are demonstrated by two sets of experiments on both our own database and standard public ones. Furthermore, occlusion and disorder problems in scene classification in video surveillance are also first studied in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammographic mass detection is an important task for the early diagnosis of breast cancer. However, it is difficult to distinguish masses from normal regions because of their abundant morphological characteristics and ambiguous margins. To improve the mass detection performance, it is essential to effectively preprocess mammogram to preserve both the intensity distribution and morphological characteristics of regions. In this paper, morphological component analysis is first introduced to decompose a mammogram into a piecewise-smooth component and a texture component. The former is utilized in our detection scheme as it effectively suppresses both structural noises and effects of blood vessels. Then, we propose two novel concentric layer criteria to detect different types of suspicious regions in a mammogram. The combination is evaluated based on the Digital Database for Screening Mammography, where 100 malignant cases and 50 benign cases are utilized. The sensitivity of the proposed scheme is 99% in malignant, 88% in benign, and 95.3% in all types of cases. The results show that the proposed detection scheme achieves satisfactory detection performance and preferable compromises between sensitivity and false positive rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The novel phase field model with the "polymer characteristic" was established based on a nonconserved spatiotemporal Ginzburg-Landau equation (TDGL model A). Especially, we relate the diffusion equation with the crystal growth faces of polymer single crystals. Namely, the diffusion equations are discretized according to the diffusion coefficient of every lattice site in various crystal growth faces and the shape of lattice is selected based on the real proportion of the unit cell dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter, we report the morphological transition of dry block copolymer vesicles into onion-like multilamellar micelles induced through heating. When the temperature is higher than the glass transition temperature of block copolymer, the vesicles can collapse, and finally form onion-like multilamellarmicelles via micro phase separation. This phenomenon is observed in both A-B and A-B-A block copolymer vesicles, indicating that the technique used in this study can be an alternative method to synthesize multilamellar micelles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

novel compound (BCBP) based on the modification of a well-known host material 4,4'-(bis(9-carbazolyl))biphenyl (CBP) through arylmethylene bridge linkage was synthesized, and fully characterized. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied. A high glass transition temperature (T-g) of 173 degrees C is observed for BCBP due to the introduction of the bridged structure, remarkably contrasting with a low T-g of 62 degrees C for CBP. Furthermore, the bridged structure enhances the conjugation and raises the HOMO energy, thus facilitating hole-injection and leading to a low turn-on voltage in an electroluminescent device. With the device structure of ITO/MoO3/NPB/Ir complex: BCBP/BCP/Alq(3)/LiF/Al, maximum power efficiencies of 41.3 lm/W and 6.3 lm/W for green- and blue-emitting OLED were achieved, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanocrystals of CeF3 with the hexagonal structure and different morphologies such as the disk, the rod, and the dot have been successfully synthesized via a mild ultrasound assisted route from an aqueous solution of cerium nitrate and different fluorine sources (KBF4, NaF, NH4F). The use of different fluorine sources has a remarkable effect on the morphology of the final product. The luminescence and UV-vis absorption properties of CeF3 nanocrystals with different morphologies have been investigated. Compared with other shape nanocrystals, the luminescence intensity of the disklike nanocrystals is obviously enhanced. It is suggested that the function-improved materials could be obtained by tailoring the shape of the CeF3 nanocrystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructure and morphology and their development of poly(di-n-hexylsilane) (PDHS) and poly(di-n-butylsilane) (PDBS) during the crystal-mesophase transition are investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction and hot-stage atomic force microscopy. At room temperature, PDHS consists of stacks of lamellae separated by mesophase layers, which can be well accounted using an ideal two-phase model. During the crystal-mesophase transition, obvious morphological changes are observed due to the marked changes in main chain conformation and intermolecular distances between crystalline phase and mesophase. In contrast to PDHS, the lamellae in PDBS barely show anisotropy in dimensions at room temperature. The nonperiodic structure and rather small electronic density fluctuation in PDBS lead to the much weak SAXS. The nonperiodic structure is preserved during the crystal-mesophase transition because of the similarity of main chain conformation and intermolecular distances between crystalline phase and mesophase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducting polyaniline-poly(ethylene oxide) blends were prepared from their aqueous solutions. The blends displayed an electrical conductivity percolation threshold as low as 1.83 wt % of polyaniline loading. As demonstrated by scanning electron microscopy, polarized optical microscopy, and wide-angle X-ray diffraction studies, the conducting polyaniline took a fibrillar morphology in the blend, and it existed only in the amorphous phase of poly(ethylene oxide). A three-phase model combining morphological factors instead of a two-phase model was proposed to explain the low-conductivity percolation threshold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noncompatibilized and compatibilized ABS-nylon1010 blends were prepared by melt mixing. Polystyrene and glycidyl methacrylate (SG) copolymer was used as a compatibilizer to enhance the interfacial adhesion and to control the morphology. This SG copolymer contains reactive glycidyl groups that are able to react with PA1010 end groups (-NH2 or -COOH) under melt conditions to form SG-g-Nylon copolymer. Effects of the compatibilizer SG on the rheological, thermal, and morphological properties were investigated by capillary rheometer, DSC, and SEM techniques. The compatibilized ABS-PA1010 blend has higher viscosity, lower crystallinity, and smaller phase domain compared to the corresponding noncompatibilized blend. (C) 1999 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigations of classification on the valence changes from RE3+ to RE2+ (RE = Eu, Sm, Yb, Tm) in host compounds of alkaline earth berate were performed using artificial neural networks (ANNs). For comparison, the common methods of pattern recognition, such as SIMCA, KNN, Fisher discriminant analysis and stepwise discriminant analysis were adopted. A learning set consisting of 24 host compounds and a test set consisting of 12 host compounds were characterized by eight crystal structure parameters. These parameters were reduced from 8 to 4 by leaps and bounds algorithm. The recognition rates from 87.5 to 95.8% and prediction capabilities from 75.0 to 91.7% were obtained. The results provided by ANN method were better than that achieved by the other four methods. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology and structure of the syndiotactic polystyrene (sPS)/atactic polystyrene (aPS) blends with various compositions have been studied by means of DSC, optical microscopy, SAXS, and WAXD. The results show that aPS is miscible with amorphous region of sPS. There is no macroscopic evidence that aPS forms separated domains in the blends. The decrease in crystallinity of sPS in the blends implies segregation of the aPS to the interfibrillar regions of the spherulites of sPS. The constancy of interlamellar distance and melting points indicates that the fibrillar structural units of sPS is unchanged on addition of aPS to sPS, and the unchanging parameters of the sPS unit cells mean that aPS does not enter the unit cells of sPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the morphology of blends of PA1010 and polypropylene (PP) compatibilized with polypropylene grafted with glycidyl methacrylate (PP-g-GMA). It is found that the morphologies are dependent on the content of glycidyl methacrylate in PP-g-GMA and the mixing time. The size of the dispersed PP particles decreases as the content of GMA in the PP-g-GMA increases for binary blends of PA1010 and PP-g-GMA. Similar results are obtained for changing the mixing time. Ternary blends of PA1010, PP, and PP-g-GMA indicate that morphologies depend on the content of glycidyl metyacrylate in the PP-g-GMA and the miscibility of PP and PP-g-GMA. By changing the content of GMA in PP-g-GMA, it was possible to introduce significant changes of morphology. A matrix removal TEM method is used to investigate the interfacial structure of PA1010/PP blends containing PP-g-GMA as a compatibilizer. This technique shows the reaction product between PA1010 and PP-g-GMA to be located at interface as a surrounding layer around domain particles. SEM observation on the interface shows that the adhesion between PA1010 and pure PP is very weak and their interface boundary is sharp. For the samples of PA1010 and PP-g-GMA, it was found that the interface was not so obvious, and the reaction between PA1010 and PP-g-GMA strengthens the interface significantly. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modification of ethylene-propylene copolymer (EPM) has been accomplished by melt grafting of maleic anhydride (MAH) molecules promoted by radical initiators. The resulting EPM-g-MAH and EPM have been used to obtain binary nylon 1010/EPM or nylon 1010/EPM-g-MAH blends by melt mixing. It was found that the EPM-g-MAH copolymer used as the second component has a profound effect upon the properties of the resulting blends. This behavior has been attributed to a series of chemical and physicochemical interactions taking place between the two components. The interactions are due to the presence of the anhydride functionality on the copolymer and do not occur when this functionality is absent. The interaction has been confirmed by Fourier-transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and scanning electron microscopic.