254 resultados para NaA zeolite
Resumo:
The secondary pores in the nanosized HZSM-5 zeolite have been observed for the first time via Xe-129 NMR spectroscopy using xenon as a probe; the location of non-framework Al can also be identified.
Resumo:
Framework titanium in Ti-silicalite-1 (TS-1) zeolite was selectively identified by its resonance Raman bands using ultraviolet (W) Raman spectroscopy. Raman spectra of the TS-1 and silicalite-1 zeolites were obtained and compared using continuous wave laser lines at 244, 325, and 488 nm as the excitation sources. It was only with the excitation at 244 nm that resonance enhanced Raman bands at 490, 530, and 1125 cm(-1) appeared exclusively for the TS-1 zeolite. Furthermore, these bands increased in intensity with the crystallization time of the TS-1 zeolite. The Raman bands at 490, 530, and 1125 cm(-1) are identified as the framework titanium species because they only appeared when the laser excites the charge-transfer transition of the framework titanium species in the TS-1. No resonance Raman enhancement was detected for the bands of silicalite-1 zeolite and for the band at 960 cm(-1) of TS-1 with any of the excitation sources ranging from the visible tb UV regions. This approach can be applicable for the identification of other transition metal ions substituted in the framework of a zeolite or any other molecular sieve.
Resumo:
The synthesis of zeolite X is characterized by UV Raman spectroscopy, NMR spectroscopy, and X-ray diffraction. UV Raman spectra of the liquid phase of the synthesis system indicate that AI(OH); species are incorporated into silicate species, and the polymeric silicate species are depolymerized into monomeric silicate species during the early stage of zeolite formation. An. intermediate species possessing Raman bands at 307, 503, 858 and 1020 cm(-1) is detected during the crystallization ill the solid phase transformation. The intermediate species is attributed to the beta cage, the secondary building unit of zeolite X. A model for the formation of zeolite X is proposed, which involves four-membered rings connecting to each other via six-membered ring to form beta cages, then the beta cages interconnect via double six-membered rings to form the framework of zeolite X. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Catalytic cracking of butene to propene and ethene was investigated over HMCM-22 zeolite. The performance of HMCM-22 zeolite was markedly influenced by time-on-stream (TOS) and reaction conditions. A rapid deactivation during the first I h reaction, followed by a quasi-plateau in activity, was observed in the process along with significant changes in product distributions, which can be attributed to the fast coking process occurring in the large supercages of MCM-22.