179 resultados para Membranes, Artificial
Resumo:
Artificial neural network(ANN) approach was applied to classification of normal persons and lung cancer patients based on the metal content of hair and serum samples obtained by inductively coupled plasma atomic emission spectrometry (ICP-AES) for the two groups. This method was verified with independent prediction samples and can be used as an aiding means of the diagnosis of lung cancer. The case of predictive classification with one element missing in the prediction samples was studied in details, The significance of elements in hair and serum samples for classification prediction was also investigated.
Resumo:
A new series of mixed conducting oxides, Sr10-n/2BinFe20Om (n = 4, 6, 8, 10), were synthesized by a solid state reaction method, and they have high oxygen permeability. The oxygen permeation rate at 1150 K is 0.41 ml(STD)/ cm(2).min for n = 6 and 0.90 ml(STD)/cm(2).min for n = 10, which is two times higher than that for Sr1-xBixFeO3 (x = 0.5). For the Sr1-xBixFeO3 (x = 0.1, 0.3, 0.5) series, the oxygen flux increases with increasing Bi content. (C) 1998 Elsevier Science Ltd.
Resumo:
The voltammetric behaviour of dye-modified supported bilayer lipid membranes is investigated. (C) 1997 Elsevier Science S.A.
Resumo:
In the TCNQ-modified BLM, the voltammetric response is different due to the different methods used to prepare the membrane forming solution. The direct and indirect dissolved methods result in irreversible and reversible responses respectively. These results can be explained by the different styles of the orientation of TCNQ in the membrane. The reversible response is controlled by the diffusion of electroactive species in the interior of the membrane. When MB is used to modify the BLM, very complex voltammograms are obtained. The intersection of the voltammetric curves can be regarded to be owing to the appearance of new phase in the membrane caused by MB. But it disappears at lower scan rate. Peak current increases with decreasing scan rate. This indicates that the resistance of the membrane at lower scan rate is lower than that at higher scan rate. Asymmetric curve of MB incorporated BLM is ascribed to the different rates of redox reaction at the two membrane/solution interfaces.
Resumo:
Supported lipid membranes consisting of self-assembled alkanethiol and lipid monolayers on gold substrates could be produced by three different deposition methods: the Langmuir-Blodgett (L-B) technique, the painted method, and the paint-freeze method, By using cyclic voltammetry, chronoamperometry/chronocoulometry and a.c. impedance measurements, we demonstrated that lipid membranes prepared by these three deposition methods had obvious differences in specific capacitance, resistance and thickness. The specific capacitance of lipid membranes prepared by depositing an L-B monolayer on the alkanethiol alkylated surfaces was 0.53 mu Fcm(-2), 0.44 mu Fcm(-2) by the painted method and 0.68 mu Fcm(-2) by the paint-freeze method. The specific conductivity of lipid membranes prepared by the L-B method was over three times lower than that of the painted lipid membranes, while that of the paint-freeze method was the lowest. The difference among the three types of lipid membranes was ascribed to the influence of the organic solvent in lipid films and the changes in density of the films. The lipid membranes prepared by the usual painted method contained a trace amount of the organic solvent. The organic solvent existing in the hydrocarbon core of the membrane reduced the density of the membrane and increased the thickness of the membrane. The membrane prepared by depositing an L-B monolayer containing no solvent had higher density and the lowest fluidity, and the thickness of the membrane was smaller. The lipid membrane prepared by the paint-freeze method changed its structure sharply at the lower temperature. The organic solvent was frozen out of the membrane while the density of the membrane increased greatly. All these caused the membrane to exist in a ''tilted'' state and the thickness of this membrane was the smallest. The lipid membrane produced by the paint-freeze method was a membrane not containing organic solvent. This method was easier in manipulation and had better reproducibility than that of the usual painting method and the method of forming free-standing lipid film. The solvent-free membrane had a long lifetime and a higher mechanical stability. This model membrane would be useful in many areas of scientific research.
Resumo:
The effect of lanthanum and calcium on the structure and function of human erythrocyte membranes was investigated by fluorescence polarization, spin- labeled electron spin resonance (ESR) and laser Raman spectroscopy. The results showed that low concentration of La3+ (0.5 mu mol/L) activated a Little (Na++K+)-ATPase and Mg2+-ATPase activities, and it inhibited obvi ously the ATPase activities with increasing its concentrations. La3+ lowered the lipid fluidity of human erythrocyte membranes and decreased the vibration intensity of alpha-helix of the protein in the Amide I '. The effect of Ca2+ on the lipid fluidity and alpha-helix of the protein in the Amide I ' was smaller than that of La3+.
Resumo:
It is found that there is a linear relationship between log P-w, and the parameter term V-f/0.5 E(coh) [1+(delta(w) - delta(p))(2)/delta(p)(2), from the water permeability (P-w) data of 21 polymers covering 4 orders of magnitude. This correlation may be useful in choosing membrane materials for dehumidification of gases.
Resumo:
Water vapor absorption and desorption by poly (phenylene oxide) (PPO) and sulfonated PPO (SPPO) membranes were studied at a constant temperature of 30-degrees-C and over a broad range of water activity (0.05 less-than-or-equal-to a < 0.8) by the weighing
Resumo:
Poly(2,6-dimethylphenylene oxide) (PPO) was sulfonated to varying degrees using different sulfonating agents. Physical properties such as solubility, density, and thermal properties were studied for both PPO and sulfonated PPO (SPPO) with different degree
Resumo:
The permeation behaviors of water vapor and gases were studied for both PPO and SPPO of different sulfonation degree. It was found that the permeability of water vapor increased, and those of oxygen and nitrogen decreased; thus the selectivity for water v
Resumo:
Surface fluorination of poly (trimethylsilylpropyne) (PTMSP) membranes by CF4 plasma was studied. The surface fluorination of the membranes was carried out in an atmosphere of CF4 in a capacitively coupled discharge apparatus with external electrodes. Dramatic increase in selectivity (P(O2)/P(N2)) was observed. The effect of fluorination conditions such as duration of treatment and discharge power on the permeabilities of the membranes was studied. X-ray photoelectron spectrometric data of modified PTMSP membranes showed a drastic alternation in the surface layer. The P(O2) and P(O2)/P(N2) of the membranes were observed to be dependent on the F/C atomic ratio. At F/C > 1, the P(O2/P(N2) value of the membranes could be more than four.
Resumo:
The porosity and the hydrophobicity of membranes are two essential requirements for membrane distillation (MD) of aqueous solutions. So far, the hydrophobic porous membranes used in MD studies have been prepared from hydrophobic materials. In this work, hydrophilic cellulose acetate and cellulose nitrate membranes were modified into hydrophobic membranes by radiation grafting polymerization and plasma polymerization, and used in MD studies successfully. The results indicated that modified membranes with good performance in MD can be obtained if the modifying conditions are controlled appropriately. Especially plasma polymerization, in which many particular kinds of monomer could be polymerized onto the surface of porous materials, has become an efficient method to prepare hydrophobic porous membrane with high performance from hydrophilic membranes. It will stimulate the development and practical application of MD.