134 resultados para MAXIMAL SUBGROUPS
Resumo:
In this paper, the effects of some chemical and physical factors such as temperature, pH values, glycerol, and divalent metal cations on the protease activity of venom from jellyfish, Rhopilema esculentum Kishinouye, were assayed. Protease activity was dependent on temperature and pH values. Zn2+, Mg2+, and Mn2+ in sodium phosphate buffer (0.02 M, pH 8.0) could increase protease activity. Mn2+ had the best effects among the three metal cations and the effect was about 20 times of that of Zn2+ or Mg2+ and its maximal protease activity was 2.3 x 10(5) U/mL. EDTA could increase protease activity. PMSF had hardly affected protease activity. O-Phenanthroline and glycerol played an important part in inhibiting protease activity and their maximal inhibiting rates were 87.5% and 82.1%, respectively. (c) 2005 Elsevier Ltd. All rights reserved.
Residues of enrofloxacin, furazolidone and their metabolites in Nile tilapia (Oreochromis niloticus)
Resumo:
The residues of enrofloxacin and its metabolite in Nile tilapia (Oreochromis niloticus) were studied after oral dose of 50 mg/kg for 7 days. To find the differences between Nile tilapia and Chinese shrimp (Penaeus chinensis), the residues of enrofloxacin in P chinensis were also studied under the same conditions. The results showed that enrofloxacin metabolized into ciprofloxacin in both Nile tilapia and P chinensis, the maximal concentration of enrofloxacin in muscle, liver and plasma of Nile tilapia were 3.61 mu g/g, 5.96 mu g/g, 1.25 mu g/ml respectively, and ciprofloxacin in muscle was 0.22 mu g/g. The maximal concentration of enrofloxacin and ciprofloxacin in P chinensis were 1.68 mu g/g and 0.07 mu g/g respectively. The predicted withdrawal time for Nile tilapia was 22 days, and P. chinensis was 12 days under our experiment conditions. The residues of fitrazolidone [3-(5-nitrofurfurylidenamino)-2-oxazolidinone] and its main metabolite 3-amina-2-oxazolidinone (AOZ) in Nile tilapia were first determined by HPLC/MS. Results showed that after oral dose of 30 mg/kg for 7 days, the maximum concentration of farazolidone in Nile tilapia was 413 mu g/kg after 6 h, whereas AOZ residue reached its maximum (31 mu g/kg) right after stopping treatment. In contrast to the high metabolic rate of furazolidone, AOZ was very difficult to eliminate in vivo, thus the withdrawal time of furazolidone in Nile tilapia was 22 days at least. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
How coniferous trees in northern China changed their distribution ranges in response to Quaternary climatic oscillations remains largely unknown. Here we report a study of the phylogeography of Pinus tabulaeformis, an endemic and dominant species of coniferous forest in northern China. We examined sequence variation of maternally inherited, seed-dispersed mitochondrial DNA (mtDNA) (nad5 intron 1 and nad4/3-4) and paternally inherited, pollen- and seed-dispersed chloroplast DNA (cpDNA) (rpl16 and trnS-trnG) within and among 30 natural populations across the entire range of the species. Six mitotypes and five chlorotypes were recovered among 291 trees surveyed. Population divergence was high for mtDNA variation (G(ST) = 0.738, N-ST = 0.771) indicating low levels of seed-based gene flow and significant phylogeographical structure (N-ST > G(ST), P < 0.05). The spatial distribution of mitotypes suggests that five distinct population groups exist in the species: one in the west comprising seven populations, a second with a north-central distribution comprising 15 populations, a third with a southern and easterly distribution comprising five populations, a fourth comprising one central and one western population, and a fifth comprising a single population located in the north-central part of the species' range. Each group apart from the fourth group is characterized by a distinct mitotype, with other mitotypes, if present, occurring at low frequency. It is suggested, therefore, that most members of each group apart from Group 4 are derived from ancestors that occupied different isolated refugia in a previous period of range fragmentation of the species, possibly at the time of the Last Glacial Maximum. Possible locations for these refugia are suggested. A comparison of mitotype diversity between northern and southern subgroups within the north-central group of populations (Group 2) showed much greater uniformity in the northern part of the range both within and between populations. This could indicate a northward migration of the species from a southern refugium in this region during the postglacial period, although alternative explanations cannot be ruled out. Two chlorotypes were distributed across the geographical range of the species, resulting in lower levels of among-population chlorotype variation. The geographical pattern of variation for all five chlorotypes provided some indication of the species surviving past glaciations in more than one refugium, although differentiation was much less marked, presumably due to the greater dispersal of cpDNA via pollen.
Resumo:
A pre-column derivatization method for the sensitive determination of amines using a labeling reagent 2-(11H-benzo[a]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) followed by high-performance, liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by LC/APCI/MS in positive-ion mode. The chromophore of 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) reagent was replaced by 2-(11H-benzo[a]-carbazol-11-yl) ethyl functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEC-Cl. BCEC-Cl could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M+ H](+) under APCI/MS in positive-ion mode. The collision-induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 261.8 and m/z 243.8 corresponding to the cleavages of CH2O-CO and CH2-OCO bonds. Studies on derivatization demonstrated excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% were observed with three- to four-fold molar reagent excess. In addition, the detection responses for BCEC-derivatives were compared to those obtained using 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) and 9-fluorenyl methylchloroformate, (FMOC-Cl) as labeling reagents. The ratios I-BCEC/I-BCEOC = 1.94-2.17 and I-BCEC/I-FMOC = 1.04-2.19 for fluorescent (FL) responses (here, I was relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C-8 column. Detection limits calculated from 0.50 pmol injection, at a signal-to-noise ratio of 3, were 1.77-14.4 fmol. The relative standard deviations for within-day determination (n = 11) were 1.84-2.89% for the tested amines. The mean intra- and inter-assay precision for all amines levels were < 3.64% and 2.52%, respectively. The mean recoveries ranged from 96.6% to 107.1% with their standard deviations in the range of 0.8-2.7. Excellent linear responses were observed with coefficients of > 0.9996. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A sensitive method for the determination of 30 kinds of free fatty acids (FFAs, C-1-C-30) with 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4,5-f] 9,10-phenan- threne (TSPP) as labeling reagent and using high performance liquid chromatography with fluorescence detection and identification by online postcolumn mass spectrometry with atmospheric pressure chemical ionization (APCI) source in positive-ion mode (HPLC/MS/APCI) has been developed. TSPP could easily and quickly label FFAs in the presence of K2CO3 catalyst at 90 degrees C for 30 min in N,N-dimethylformamide (DMF) solvent, and maximal labeling yields close to 100% were observed with a 5-fold excess of molar reagent. Derivatives were stable enough to be efficiently analyzed by high performance liquid chromatography. TSPP was introduced into fatty acid molecules and effectively augmented MS ionization of fatty acid derivatives and led to regular MS and MS/MS information. The collision induced cleavage of protonated molecular ions formed specific fragment ions at m/z [MH](+)(molecular ion), m/z [M'+CH2CH2](+)(M' was molecular mass of the corresponding FFA) and m/z 295.0 (the, mass of protonated molecular core structure of TSPP). Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C-8 column (4.6 x 150 mm, 5 mu m, Agilent) with a good baseline resolution in combination with a gradient elution. Linear ranges of 30 FFAs are 2.441 x 10(-3) to 20 mu mol/L, detection limits are 3.24 similar to 36.97 fmol (injection volume 10 mu L, at a signal-to-noise ratio of 3, S/N 3:1). The mean interday precision ranged from 93.4 to 106.2% with the largest mean coefficients of variation (R.S.D.) < 7,5%. The mean intraday precision for all standards was < 6.4% of the expected concentration. Excellent linear responses were observed with correlation coefficients of > 0.9991. Good compositional data could be obtained from the analysis of extracted fatty acids from as little as 200 mg of bryophyte plant samples.Therefore, the facile TSPP derivatization coupled with HPLC/MS/APCI analysis allowed the development of a highly sensitive method for the quantitation of trace levels of short and long chain fatty acids from biological and natural environmental samples.
Resumo:
A sensitive method for the determination of long-chain fatty acids (LCFAs) (>C20) using 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4.5-f]-9,10-phenanthrene (TSPP) as tagging reagent with fluorescence detection and identification with post-column APCI/MS has been developed. The LCFAs in bryophyte plant samples were obtained based on distillation extraction with 1: 1 (v/v) chloroform/methanol as extracting solvent. TSPP could easily and quickly label LCFAs at 90 degrees C in the presence of K2CO3 catalyst in DMF. Eleven free LCFAs from the extracts of bryophyte plants were sensitively determined. Maximal labeling yields close to 100% were observed with a five-fold excess of molar reagent. Separation of the derivatized fatty acids exhibited a good baseline resolution in combination with a gradient elution on a reversed-phase Eclipse XDB-C-8 column. Calculated detection limits from 1.0 pmol injection, at a signal-to-noise ratio of 3, were 26.19-76.67 fmol. Excellent linear responses were observed with coefficients of >0.9996. Good compositional data were obtained from the analysis of the extracted LCFAs containing as little as 0.2 g of bryophyte plant samples. Therefore, the facile TSPP derivatization coupled with HPLC/APCI/MS analysis allowed the development of a highly sensitive method for the quantitation of trace levels of LCFAs from biological and natural environmental samples. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A study was carried out to examine the effect of dynamic photosynthetically active photon flux density (PPFD) on photoinhibition and energy use in three herbaceous species, prostrate Saussurea superba, erect-leaved S. katochaete, and half-erect-leaved Gentiana straminea, from the Qinghai-Tibet Plateau. Chlorophyll fluorescence response was measured under each of three sets of high-low PPFD combinations: 1700-0, 1400-300, and 1200-500 mu mol m(-2) s(-1), illuminating in four dynamic frequencies: 1, 5, 15, and 60 cycles per 2 h. The total light exposure time was 2h and the integrated PPFD was the same in all treatments. The highest frequency of PPFD fluctuation resulted in the lowest photochemical activity, the highest level of non-photochemical quenching, and the greatest decrease of F-v/F-m (maximal photochemical efficiency of PSII). The 5 and 15 cycles per 2h treatments resulted in higher photochemical activity than the 1 cycle per 2h treatment. The 1700-0 PPFD combination led to the lowest photochemical activity and more serious photoinhibition in all species. S. superba usually exhibited the highest photochemical activity and CO2 uptake rate, the lowest reduction of F-v/F-m,F- and the smallest fraction of energy in thermal dissipation. With similar fractions of thermal dissipation, S. katochaete had relatively less photoinhibition than G. straminea owing to effective F-o quenching. The results suggest that high frequency of fluctuating PPFD generally results in photoinhibition, which is more serious under periods of irradiation with high light intensity. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A pre-column derivatization method for the sensitive determination of amines using the labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-isopropyl chloroformate (BCIC-Cl) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives is carried out by high performance liquid chromatography/atmospheric pressure chemical ionization (LC-APCl-MS-MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent is replaced by 1,2-benzo-3,4-dihydrocarbazole-9-isopropyl functional group, which results in a sensitive fluorescence derivatizing reagent BCIC-Cl. BCIC-Cl can easily and quickly label amines. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography and show an intense protonated molecular ion corresponding m/z [MH](+) under APCl in positive-ion mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 260 corresponding to the cleavage of CH2-OCO bond. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3 to 4-fold molar reagent excess. In addition, the detection responses for BCIC derivatives are compared with those obtained using CEOC and FMOC as derivatization reagents. The ratios of l(BCIC)/l(CEOC) and l(BCIC)/l(FMOC) are, respectively, 1.23-3.14 and 1.25-3.08 for fluorescent (FL) responses (here, l is relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C-8 column. Detection limits are calculated from 1.0 pmol injection, at a signal-to-noise ratio of 3, are 10.6-37.8 fmol. The mean interday accuracy ranges from 94 to 105% for fluorescence detection with the largest mean %CV < 7.5. The mean interday precision for all standards is < 6.0% of the expected concentration. Excellent linear responses are observed with coefficients of > 0.9997.
Resumo:
A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Based on the fractal theories, contractive mapping principles as well as the fixed point theory, by means of affine transform, this dissertation develops a novel Explicit Fractal Interpolation Function(EFIF)which can be used to reconstruct the seismic data with high fidelity and precision. Spatial trace interpolation is one of the important issues in seismic data processing. Under the ideal circumstances, seismic data should be sampled with a uniform spatial coverage. However, practical constraints such as the complex surface conditions indicate that the sampling density may be sparse or for other reasons some traces may be lost. The wide spacing between receivers can result in sparse sampling along traverse lines, thus result in a spatial aliasing of short-wavelength features. Hence, the method of interpolation is of very importance. It not only needs to make the amplitude information obvious but the phase information, especially that of the point that the phase changes acutely. Many people put forward several interpolation methods, yet this dissertation focuses attention on a special class of fractal interpolation function, referred to as explicit fractal interpolation function to improve the accuracy of the interpolation reconstruction and to make the local information obvious. The traditional fractal interpolation method mainly based on the randomly Fractional Brown Motion (FBM) model, furthermore, the vertical scaling factor which plays a critical role in the implementation of fractal interpolation is assigned the same value during the whole interpolating process, so it can not make the local information obvious. In addition, the maximal defect of the traditional fractal interpolation method is that it cannot obtain the function values on each interpolating nodes, thereby it cannot analyze the node error quantitatively and cannot evaluate the feasibility of this method. Detailed discussions about the applications of fractal interpolation in seismology have not been given by the pioneers, let alone the interpolating processing of the single trace seismogram. On the basis of the previous work and fractal theory this dissertation discusses the fractal interpolation thoroughly and the stability of this special kind of interpolating function is discussed, at the same time the explicit presentation of the vertical scaling factor which controls the precision of the interpolation has been proposed. This novel method develops the traditional fractal interpolation method and converts the fractal interpolation with random algorithms into the interpolation with determined algorithms. The data structure of binary tree method has been applied during the process of interpolation, and it avoids the process of iteration that is inevitable in traditional fractal interpolation and improves the computation efficiency. To illustrate the validity of the novel method, this dissertation develops several theoretical models and synthesizes the common shot gathers and seismograms and reconstructs the traces that were erased from the initial section using the explicit fractal interpolation method. In order to compare the differences between the theoretical traces that were erased in the initial section and the resulting traces after reconstruction on waveform and amplitudes quantitatively, each missing traces are reconstructed and the residuals are analyzed. The numerical experiments demonstrate that the novel fractal interpolation method is not only applicable to reconstruct the seismograms with small offset but to the seismograms with large offset. The seismograms reconstructed by explicit fractal interpolation method resemble the original ones well. The waveform of the missing traces could be estimated very well and also the amplitudes of the interpolated traces are a good approximation of the original ones. The high precision and computational efficiency of the explicit fractal interpolation make it a useful tool to reconstruct the seismic data; it can not only make the local information obvious but preserve the overall characteristics of the object investigated. To illustrate the influence of the explicit fractal interpolation method to the accuracy of the imaging of the structure in the earth’s interior, this dissertation applies the method mentioned above to the reverse-time migration. The imaging sections obtained by using the fractal interpolated reflected data resemble the original ones very well. The numerical experiments demonstrate that even with the sparse sampling we can still obtain the high accurate imaging of the earth’s interior’s structure by means of the explicit fractal interpolation method. So we can obtain the imaging results of the earth’s interior with fine quality by using relatively small number of seismic stations. With the fractal interpolation method we will improve the efficiency and the accuracy of the reverse-time migration under economic conditions. To verify the application effect to real data of the method presented in this paper, we tested the method by using the real data provided by the Broadband Seismic Array Laboratory, IGGCAS. The results demonstrate that the accuracy of explicit fractal interpolation is still very high even with the real data with large epicenter and large offset. The amplitudes and the phase of the reconstructed station data resemble the original ones that were erased in the initial section very well. Altogether, the novel fractal interpolation function provides a new and useful tool to reconstruct the seismic data with high precision and efficiency, and presents an alternative to image the deep structure of the earth accurately.
Resumo:
The magnetosphere-ionosphere coupling is mainly manifested by the trans- porting processes of energy into the ionosphere , the energy is carried by solar wind and firstly accumulate at the magnetosphere, and the coupling processes also significantly include the interaction between the magnetosphere and ionosphere for mass and energy. At the quiet condition, energy is delivered by the large-scale convection of the geomagnetic field; the huge energy from solar wind bulk will be injected into and consumed at the near magnetosphere and ionosphere by the geomagnetic storm and substorm activities. Aurorae and FACs (Field-aligned currents) are the important phenomena in the coupling processes. In the present work, firstly, we analyze the activity characteristics of auroral precipitating particle, secondly, we study the distribution characters of large-scale field aligned currents (LS FACs) at storm-time using the observations from different satellites at different altitudes. Finally, we investigate the evolution of the geomagnetic field configuration at the nightside sector on the onset of the expansion phase in a substorm event, the substorm event happened at 0430UT to 0630UT on 8th Nov. 2004. The main results as follows: At the first, the data of the estimated power input (EPI) of auroral particles from NOAA/POES (Polar orbiting environmental satellite) for some 30 years have been analyzed. The variation tendencies of the EPI generally coincide with aa, AE and Dst indices. The annual variation of EPI shows equinox peaks and an asymmetric-activity with a higher peak in the winter-hemisphere than in the summer-hemisphere. The diurnal UT variations are different from north and south hemisphere: for north hemisphere, the peak appears at 1200UT, and the relative deviation is 22% to the daily average of the north hemisphere. For south hemisphere, the maximal deviation is 22% at 2000UT. So the diurnal variation of EPI is more dominant than the annual variation which maximal deviation is 3% to 12% for different seasons. Studies on correlations of the hourly average of EPI, Pa, with AE and Dst indices show a correlation coefficient r=0.74 of Pa and AE, and r=-0.55 of Pa and Dst. The hourly EPIs for north and south polar regions, NPa and SPa, show a north-south asymmetry with a higher correlation of SPa and AE (or Dst). Time delays of EPI with respect to magnetic indices are examined, the maximum correlation coefficient of Pa with AE (r=0.78) occurs when the time delay =0, suggesting a synchronous activity of auroral electrojet and auroral precipitating particles, while =1-2h, the correlation coefficient of Pa with Dst is maximum (r=0.57), suggesting that the activity of auroral particle precipitating may influence the ring current on some extent. Sencondly, we use the high-resolution magnetic field vector data of the CHAMP satellite to investigate the distribution of large-scale FACs during the great magnetic storm on 7th to 8th Nov. 2004. The results show that, whether in the northern or southern hemisphere, the number and density of large-scale FACs during the main-phase are more and bigger than these during the recover-phase, and the number of large-scale FACs in morning sector obviously is more than that in afternoon sector. In terms of the magnetic indices, we find that large-scale FACs in morning sector significantly affected by the substorm activities, while in afternoon sector the large-scale FACs mainly indicate the fluctuations of the ring-current in storm time. Accordingly to the former studies, similarly, we find that in the morning sector, the scale of the large-scale FACs move to the high-latitude region, and in the afternoon sector, large-scale FACs distinctly expand to the low-latitude region. During the time periods that the NOAA/POES auroral precipitating particle power data temporally correspond to the large-scale FACs, the more the power of auroral particle is, the more and bigger the number and density of FACs are. At the same time, we use the magnetic field vector data of POLAR obtain a good form of region 1, region 2, and three pieces of cusp FACs during a single transit at 1930UT-2006UT on 07th. And the characteristics of simultaneous electric field and energy particles observations on Polar are coincide with the five FACs pieces. Finally, by means of the observation of Cluster 4 and Goes 10、 Goes 12, we analyze the evolution process of the change of the magnetic field configuration at night sector at the expansion phase of a substorm event which happened during 0430UT to 0630UT on 8th Nov. 2004, we find that the times of the beginning of the polarizations of magnetic field are observed from Goes 10 to Goes 12 then to Cluster 4. So, at the synchronous orbit ( 6.6 RE) to 10RE distance scale of the neutral sheet, the current disruption spread tailward. Simultaneously, the strengthen of the FACs deduced from these satellites’ magnetic field observations are almost consistent with the times of polarizations, as well as the high energy particles injection and the electric field dominant variation. The onset times determined by the magnetic field polarizations from these satellites are all ahead of the onset time that confirmed from the auroral electrojet indices. So, these characters of different observations can be used as the criterions to determine the onset time for the substorms of such type as we studied.
Resumo:
The modeling formula based on seismic wavelet can well simulate zero - phase wavelet and hybrid-phase wavelet, and approximate maximal - phase and minimal - phase wavelet in a certain sense. The modeling wavelet can be used as wavelet function after suitable modification item added to meet some conditions. On the basis of the modified Morlet wavelet, the derivative wavelet function has been derived. As a basic wavelet, it can be sued for high resolution frequency - division processing and instantaneous feature extraction, in acoordance with the signal expanding characters in time and scale domains by each wavelet structured. Finally, an application example proves the effectiveness and reasonability of the method. Based on the analysis of SVD (Singular Value Decomposition) filter, by taking wavelet as basic wavelet and combining SVD filter and wavelet transform, a new de - noising method, which is Based on multi - dimension and multi-space de - noising method, is proposed. The implementation of this method is discussed the detail. Theoretical analysis and modeling show that the method has strong capacity of de - noising and keeping attributes of effective wave. It is a good tool for de - noising when the S/N ratio is poor. To give prominence to high frequency information of reflection event of important layer and to take account of other frequency information under processing seismic data, it is difficult for deconvolution filter to realize this goal. A filter from Fourier Transform has some problems for realizing the goal. In this paper, a new method is put forward, that is a method of processing seismic data in frequency division from wavelet transform and reconstruction. In ordinary seismic processing methods for resolution improvement, deconvolution operator has poor part characteristics, thus influencing the operator frequency. In wavelet transform, wavelet function has very good part characteristics. Frequency - division data processing in wavelet transform also brings quite good high resolution data, but it needs more time than deconvolution method does. On the basis of frequency - division processing method in wavelet domain, a new technique is put forward, which involves 1) designing filter operators equivalent to deconvolution operator in time and frequency domains in wavelet transform, 2) obtaining derivative wavelet function that is suitable to high - resolution seismic data processing, and 3) processing high resolution seismic data by deconvolution method in time domain. In the method of producing some instantaneous characteristic signals by using Hilbert transform, Hilbert transform is very sensitive to high - frequency random noise. As a result, even though there exist weak high - frequency noises in seismic signals, the obtained instantaneous characteristics of seismic signals may be still submerged by the noises. One method for having instantaneous characteristics of seismic signals in wavelet domain is put forward, which obtains directly the instantaneous characteristics of seismic signals by taking the characteristics of both the real part (real signals, namely seismic signals) and the imaginary part (the Hilbert transfom of real signals) of wavelet transform. The method has the functions of frequency division and noise removal. What is more, the weak wave whose frequency is lower than that of high - frequency random noise is retained in the obtained instantaneous characteristics of seismic signals, and the weak wave may be seen in instantaneous characteristic sections (such as instantaneous frequency, instantaneous phase and instantaneous amplitude). Impedance inversion is one of tools in the description of oil reservoir. one of methods in impedance inversion is Generalized Linear Inversion. This method has higher precision of inversion. But, this method is sensitive to noise of seismic data, so that error results are got. The description of oil reservoir in researching important geological layer, in order to give prominence to geological characteristics of the important layer, not only high frequency impedance to research thin sand layer, but other frequency impedance are needed. It is difficult for some impedance inversion method to realize the goal. Wavelet transform is very good in denoising and processing in frequency division. Therefore, in the paper, a method of impedance inversion is put forward based on wavelet transform, that is impedance inversion in frequency division from wavelet transform and reconstruction. in this paper, based on wavelet transform, methods of time - frequency analysis is given. Fanally, methods above are in application on real oil field - Sansan oil field.
Resumo:
Study on the structural coupling relationship between basin and range is not only helpful to recognize the basin formation and evolution systematically, but also to guide petroleum exploration in the basin. As a late Paleozoic Orogen, the South Tianshan Mountains reactivated and uplifted rapidly during the Cenozoic, and led to the Mesozoic-Cenozoic considerable thick deposits in the Kuqa Depression. The researches of the dissertation were carried out in the Kuqa depression-South Tianshan M ountain s ystem, a nd t he b rittle m icrotectonics w. ere c hosen as t he m ost important object. Based on observations and measurements of the field, we made detailed investigations on the geometry and kinematics of this area, and analyzed the abutting and cutting relationships and relative sequence of many brittle structures, such as joint, shear fractures, faults and some small-scale structures related to them closely. According to those brittle fractures' relationships with stress, the nature and variation of regional palaeostress field during the Cenozoic were studied through inversion of fault slip data and inferring stress state from joint sequences. And the deformation time was estimated primarily via ESR dating of faulting. Results show that the stress field varies as well in times as in space. The maximal principal stress direction shifted from the vertical to the horizontal, and stress regime from weak extension to strong compression from the Paleogene to the Neogene regionally. During the late Neogene, the structural deformation of the South Tianshan and the basin-range boundary was dominated by near N-S extension, while near N-S compressive deformation in the interior of the Kuqa Depression. There exits obvious differential stress state from the north to the south. ESR dating of the faulting during the Cenozoic indicates that, the normal faulting in the north edge of the Kuqa Depression have been active all along from the Miocene to the early Pleistocene, but the thrusting and reverse faulting in the interior only been active from the Pliocene to the early Pleistocene. On the base of those geological data and some geophysical information and theoretical calculation results, we infer that, the different stress regime the basin-range system is ascribed to the vertical uplift of the Tianshan Mountain. It was the vertical uplift that lead to the gravity-driven gliding of thick layers lying on the faulted basement from the South Tianshan Mountain to the Kuqa depression, and to folding and thrusting in the interior and frontal of the Kuqa depression. Combining the structural evolution with petroleum geological conditions of the Kuqa Depression, we think that the strong compressive deformation of the Kuqa Depression during rapid uplifting of the Tianshan Mountains from the Pliocene to the early Pleistocene play crucial role in the structural trap formation and proliferous gas accumulation.
Resumo:
Competency Assessment Method (CAM) is an important technique of Human Resource Management and Development in theory and practice, especially in personnel selection and training. Based on literatures of related fields, the thesis explored the feasibility of CAM in China. The main results found in this study are as follows: 1. Competencies scored in Behavioral Event Interviews (BEI) are not influenced by length of protocol, by performance in the preceding year. Average level and maximal level of complexity correlate significantly with length of protocol. Total competency frequency of outstanding executives is not significantly different from that of typical executives. These results support McCleland's view. But there is significant correlation between length of protocol and competency frequencies, which which is not agreed by McCleland. We found that competency scores using coding standard of average level and maximal level of complexity show more reliability than that using coding standard of competency frequencies. But this isn't confirmed by McCleland. 2. Inter-rater reliability was studied. The results indicated: total Category Agreement (CA) is 55.45%, over 70 percent of 20 competencies of the inter-rater reliability coefficients based on the classical test theory are significantly correlated. G coefficient based on the generalization theory is 0.85697. 3. Study of criterion sample shows that manager's competencies of China's communication enterprise are as follows: Impact and Influence, Organization Commitment, Information Seeking, Achievement Orientation, Team Leadership, Interpersonal Understanding, Initiative, Market Awareness, Self-confidence, Developing Others. This result in similar to the generic competency model of managers presented in Spencer's book. 4. CAM showed more advantages than the method of experts panel judgement.