171 resultados para Laser-produced plasma
Resumo:
By means of the Huygens-Fresnel diffraction integral, the field representation of a laser beam modulated by a hard-edged aperture is derived. The near-field and far-field transverse intensity distributions of the beams with different bandwidths are analyzed by using the representation. The numerical calculation results indicate that the amplitudes and numbers of the intensity spikes decrease with increasing bandwidth, and beam smoothing is achieved when the bandwidth takes a certain value in the near field. In the far field, the radius of the transverse intensity distribution decreases as the bandwidth increases, and the physical explanation of this fact is also given. (c) 2005 Optical Society of America.
Resumo:
报道了在20 TW皮秒激光器上完成的p偏振激光与等离子体相互作用过程中产生的快电子的角分布和能谱测量结果.实验得到:当激光功率密度小于1017 W/cm^2时,电子发射没有明显定向性,在激光入射面内多峰发射;当激光功率密度大于1017 W/cm^2,小于1018 W/cm^2时,电子主要沿靶面法线方向发射;当激光功率密度达到相对论强度时,电子主要沿激光传播方向发射;激光功率密度未达到相对论强度时,靶后表面法线方向快电子能谱拟合平均温度符合共振吸收温度定标率;激光功率密度达相对论强度以上时,靶后表面法线方向
Resumo:
We propose to utilize the leading pulse of a petawatt class laser to create a conic plasma channel in the dense plasmas. This plasma channel could serve as a natural cone to guide the main pulse to the cone tip, as behaves similarly to the physical Au cone. We estimate that the leading pulse of a petawatt laser could create a natural cone with cone tip only about 100 mu m away from the edge of compressed core plasma. The natural cone formation should be compatible for a good uniform compression and efficient fast heating of the imploded fuel.
Resumo:
A planar waveguide laser operating in a negative branch unstable resonator is Q-switched by an acoustooptic mod latorin anew configuration, providing effective, high-speed switching. The laser using a 200-mu m Nd:YAG core, face pumped by 10 laser diode bars, has produced 100-W output in a good beam quality at 100-kHz pulse rate, and 4.5 mJ at lower frequency with 15-ns pulse duration.
Resumo:
A diode pumped injection seeded single-longitudinal-mode (SLM) Nd:YAG laser is achieved by using the resonance-detection technique in Q-switching operation. The pulsed oscillator laser uses a folded cavity to achieve compact construction. This system operates at 100 Hz and provides over 20 mJ/pulse of single-frequency 1064 nm output. The M-2 values of horizontal and vertical axes are 1.58 and 1.41, respectively. The probability of putting out single-longitudinal-mode pulses is 100%. The 355 nm laser output produced by frequency tripling has a linewidth less than 200 MHz. The laser can run over eight hours continually without mode hopping.
Resumo:
Phase locking of a two-dimensional fiber laser array is experimentally demonstrated by using a self-imaging resonator and a spatial filter. The stable beam profiles of in-phase mode and out-of-phase mode are observed by controlling the position of spatial filter. The phase locking fiber array with in-phase mode has produced 26 W coherent output. An antisymmetric eigenmode is also observed in our experiments. The phase locking is not sensitive to power variations among the pump beams and the configuration has the ability to repair a missing element. (C) 2008 American Institute of Physics.
Resumo:
For the first time, to the best of our knowledge, a radially polarized laser pulse was produced from a passively Q-switched Nd:YAG ceramic microchip laser with a piece of Cr4+:YAG crystal as the saturable absorber and multilayer concentric subwavelength grating as the polarization-selective output coupler. The averaged laser power reached 450 mW with a slope efficiency of 30.2%. The laser pulse had a maximum peak power of 759 W, a minimum pulse duration of 86 ns, and a 6.7 kHz repetition rate at 3.7 W absorbed pump power. The polarization degree of the radially polarized pulse was measured to be as high as 97.4%. Such a radially polarized laser pulse with a high peak power and a short width is important to numerous applications such as metal cutting. (C) 2008 Optical Society of America
Resumo:
Cylindrical vector beams were produced from laser diode end-pumped Nd:YAG ceramic microchip laser by use of two types of subwavelength multilayer gratings as the axisymmetric-polarization output couplers respectively. The grating mirrors are composed of high- and low-refractive-index (Nb2O5/SiO2) layers alternately while each layer is shaped into triangle and concentric corrugations. For radially polarized laser output, the beam power reached 610mW with a polarization extinction ratio ( PER) of 61: 1 and a slope efficiency of 68.2%; for azimuthally polarized laser output, the beam power reached 626mW with a PER of 58: 1 and a slope efficiency of 47.6%. In both cases, the laser beams had near-diffraction limited quality. Small differences of beam power, PER and slope efficiency between radially and azimuthally polarized laser outputs were not critical, and could be minimized by further optimized adjustment to laser cavity and the reflectances of respective grating mirrors. The results manifested, by use of the photonic crystal gratings mirrors and end-pumped microchip laser configuration, CVBs can be generated efficiently with high modal symmetry and polarization purity. (C) 2008 Optical Society of America.
Resumo:
In this study, we examined the microstructure of crystals generated in borate glass by femtosecond laser irradiation (FSLI). The distribution of the high-temperature and low-temperature phases of barium metaborate crystals produced in the borate glass is analyzed using Raman spectroscopy. We then propose the possible mechanism for the generation of crystals in glass by FSLI.
Resumo:
We report on the fabrication and characterization of low-loss planar and stripe waveguides in a Nd3+-doped glass by 6 MeV oxygen-ion implantation at a dose of 1x10(15) ions/cm(2). The dark mode spectroscopy of the planar waveguide was measured using a prism coupling arrangement. The refractive index profile of the planar waveguide was reconstructed from a code based on the reflectivity calculation method. The results indicate that a refractive index enhanced region as well as an optical barrier have been created after the ion beam processing. The near-field mode profiles of the stripe waveguide were obtained by an end-fire coupling arrangement, by which three quasitransverse electric modes were observed. After annealing, the propagation losses of the planar and stripe waveguides were reduced to be similar to 0.5 and similar to 1.8 dB/cm, respectively. (c) 2007 American Institute of Physics.
Resumo:
Porous glass with high-SiO2 content was impregnated with Nd ions, and subsequently sintered at 1100 degrees C into a compact non-porous glass in air or reducing atmosphere. Sintering in a reducing atmosphere produced an intense violet-blue fluorescence at 394 nm. However, the sintering atmospheres almost did not affect the fluorescence properties in the infrared range. A good performance Nd3+-doped silica microchip laser operating at 1064 nm was demonstrated. The Nd-doped sintering glasses with high-SiO2 content are potential host materials for high power solid-state lasers and new transparent fluorescence materials. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Periodic nanostructures along the polarization direction of light are observed inside silica glasses and tellurium dioxide single crystal after irradiation by a focused single femtosecond laser beam. Backscattering electron images of the irradiated spot inside silica glass reveal a periodic structure of stripe-like regions of similar to 20 nm width with a low oxygen concentration. In the case of the tellurium dioxide single crystal, secondary electron images within the focal spot show the formation of a periodic structure of voids with 30 nm width. Oxygen defects in a silica glass and voids in a tellurium dioxide single crystal are aligned perpendicular to the laser polarization direction. These are the smallest nanostructures below the diffraction limit of light, which are formed inside transparent materials. The phenomenon is interpreted in terms of interference between the incident light field and the electric field of electron plasma wave generated in the bulk of material.
Resumo:
A high laser-induced damage threshold (LIDT) TiO2/SiO2 high reflector (HR) at 1064 nm is deposited by e-beam evaporation. The HR is characterized by optical properties, surface, and cross section structure. LIDT is tested at 1064 nm with a 12 ns laser pulse in the one-on-one mode. Raman technique and scanning electron Microscope are used to analyze the laser-induced modification of HR. The possible damage mechanism is discussed. It is found that the LIDT of HR is influenced by the nanometer precursor in the surface, the intrinsic absorption of film material, the compactness of the cross section and surface structure, and the homogeneity of TiO2 layer. Three typical damage morphologies such as flat-bottom pit, delamination, and plasma scald determine well the nanometer defect initiation mechanism. The laser-induced crystallization consists well with the thermal damage nature of HR. (C) 2008 American Institute of Physics.
Resumo:
Zirconium dioxide (ZrO2) thin films were deposited on BK7 glass substrates by the electron beam evaporation method. A continuous wave CO2 laser was used to anneal the ZrO2 thin films to investigate whether beneficial changes could be produced. After annealing at different laser scanning speeds by CO2 laser, weak absorption of the coatings was measured by the surface thermal lensing (STL) technique, and then laser-induced damage threshold (LIDT) was also determined. It was found that the weak absorption decreased first, while the laser scanning speed is below some value, then increased. The LIDT of the ZrO2 coatings decreased greatly when the laser scanning speeds were below some value. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was defect-initiated both for annealed and as-deposited samples. The influences of post-deposition CO2 laser annealing on the structural and mechanical properties of the films have also been investigated by X-ray diffraction and ZYGO interferometer. It was found that the microstructure of the ZrO2 films did not change. The residual stress in ZrO2 films showed a tendency from tensile to compressive after CO, laser annealing, and the variation quantity of the residual stress increased with decreasing laser scanning speed. The residual stress may be mitigated to some extent at proper treatment parameters. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Antireflection coatings at the center wavelength of 1053 nm were prepared on BK7 glasses by electron-beam evaporation deposition (EBD) and ion beam assisted deposition (IBAD). Parts of the two kinds of samples were post-treated with oxygen plasma at the environment temperature after deposition. Absorption at 1064 nm was characterized based on surface thermal lensing (STL) technique. The laser-induced damage threshold (LIDT) was measured by a 1064-nm Nd:YAG laser with a pulse width of 38 ps. Leica-DMRXE Microscope was applied to gain damage morphologies of samples. The results revealed that oxygen post-treatment could lower the absorption and increase the damage thresholds for both kinds of as-grown samples. However, the improving effects are not the same. (c) 2008 Elsevier B.V. All rights reserved.