243 resultados para Isotherms of adsorption of CuX2


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aluminum-substituted mesoporous SBA-15 (Al-SBA-15) materials were directly synthesized by a hydrolysis-controlled approach in which the hydrolysis of the silicon precursor (tetraethyl orthosilicate, TEOS) is accelerated by fluoride or by using tetramethyl orthosilicate (TMOS) as silicon precursor rather than TEOS. These materials were characterized by powder X-ray diffraction (XRD), N-2 sorption isotherms, TEM, Al-27 MAS NMR, IR spectra of pyridine adsorption, and NH3-TPD. It is found that the matched hydrolysis and condensation rates of silicon and aluminum precursors are important factors to achieve highly ordered mesoporous materials. Al-27 MAS NMR spectra of Al-SBA-15 show that all aluminum species were incorporated into the silica framework for the samples prepared with the addition of fluoride. A two-step approach (sol-gel reaction at low pH followed by crystallization at high pH) was also employed for the synthesis of Al-SBA-15. Studies show that the two-step approach could efficiently avoid the leaching of aluminum from the framework of the material. The calcined Al-SBA-15 materials show highly ordered hexagonal mesostructure and have both Bronsted and Lewis acid sites with medium acidity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surface sites of supported molybdenum carbide catalyst derived from different synthesis stages have been studied by in situ FT-IR spectroscopy using CO as the probe molecule. Adsorbed CO on the reduced passivated Mo2C/Al2O3 catalyst gives a main band at 2180 cm(-1), which can be assigned to linearly adsorbed CO on Mo4+ sites. The IR results show that the surface of reduced passivated sample is dominated by molybdenum oxycarbide. However, a characteristic IR band at 2054 cm-1 was observed for the adsorbed CO on MoO3/Al2O3 carburized with CH4/H-2 mixture at 1033 K (fresh Mo2C/Al2O3), which can be assigned to linearly adsorbed CO on Modelta+ (0 < delta < 2) sites Of Mo2C/Al2O3, Unlike adsorbed CO on reduced passivated Mo2C/Al2O3 catalyst, the IR spectra of adsorbed CO on fresh Mo2C/Al2O3 shows similarity to that on some of the group VIII metals (such as Pt and Pd), suggesting that fresh carbide resembles noble metals. To study the stability Of Mo2C catalyst during H-2 treatment and find proper conditions to remove the deposited carbon species, H-2 treatment of fresh Mo2C/Al2O3 catalyst at different temperatures was conducted. Partial amounts of carbon atoms in Mo2C along with some surface-deposited carbon species can be removed by the H, treatment even at 450 K. Both the surface-deposited carbon species and carbon atoms in carbide can be extensively removed at temperatures above 873 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surface properties, porosities, and adsorption capacities of activated carbons (AC) are modified by the oxidation treatment using concentrated H2SO4 at temperatures 150-270 degreesC. The modified AC was characterized by N-2 adsorption, base titration, FTIR, and the adsorption of iodine, chlorophenol, methylene blue, and dibenzothiophene. The treatment of AC with concentrated H2SO4 at 250 degreesC greatly increases the mesoporous volume from 0.243 mL/g to 0.452 mL/g, specific surface areas from 393 m(2)/g to 745 m(2)/g, and acidic surface oxygen complexes from 0.071 meq/g to 1.986 meq/g as compared with the unmodified AC. The base titration results indicate that the amount of acidic surface oxygen groups on the modified AC increases with increasing the treatment temperatures and carboxyls and phenols are the most abundant carbon-oxygen functional groups. The carboxyl groups, COO- species, and hydroxyl groups are detected mainly for the sample treated at 250 degreesC. The mesoporous properties of the AC modified by concentrated H2SO4 were further tested by the adsorption of methylene blue and dibenzothiophene. The AC modified by concentrated H2SO4 at 250 degreesC has much higher adsorption capacities for large molecules (e.g., methylene blue and dibenzothiophene) than the unmodified AC but less adsorption capacities for small molecules (e.g., iodine). The adsorption results from aqueous solutions have been interpreted using Freundlich adsorption models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adsorption of CO on both nitrided and reduced passivated Mo(2)N catalysts in either alumina supported or unsupported forms was studied by adsorption microcalorimetry and infrared (IR) spectroscopy. The CO is adsorbed on nitrided Mo(2)N catalysts on three different surface sites: 4-fold vacancies, Mo(delta+) ( 0 < delta < 2) and N sites, with differential heats of CO adsorption decreasing in the same order. The presence of the alumina-support affects the energetic distribution of the adsorption sites on the nitrided Mo(2)N, i.e. weakens the CO adsorption strength on the different sites and changes the fraction of sites adsorbing CO in a specific form, revealing that the alumina supported Mo(2)N phase shows lower electron density than pure Mo(2)N. On reduced passivated Mo(2)N catalysts the CO was found to adsorb mainly on Mo(4+) sites, although some slightly different surface Mo(delta+) d (0 < delta < 2) sites are also detected. The nature, density and distribution of surface sites of reduced passivated Mo(2)N/gAl(2)O(3) were similar to those on reduced MoO(3)/gamma-Al(2)O(3).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Freshly prepared Fe and Al hydrous oxide gels and the amorphous product of heating gibbsite selectively adsorbed traces of Ca and Sr from solutions containing a large excess (∼1M) of NaNO3. The fraction of the added Ca (Sr) adsorbed depended principally on the suspension pH, the amount of solid present, and to a lesser extent on the NaNO3 concentration. Significant Ca and Sr adsorption occurred on the Fe and Al gels, and heated gibbsite, at pH values below the points of zero charge (8.1, 9.4, and 8.3±0.1, respectively), indicating specific adsorption. The pH (± 0.10) at which 50% of the Ca was adsorbed (pH50) occurred at pH 7.15 for the Fe gel (0.093M Fe), 8.35 for the Al gel (0.093M Al), and 6.70 for the heated gibbsite (0.181M Al); for Sr, the pH50 values were 7.10, 9.00, and 6.45, respectively. For the Fe gel and heated gibbsite, an empirical model based on the law of mass action described the pH dependence of adsorption reasonably well and suggested that for each Ca or Sr fraction adsorbed, approximately one proton was released. Failure of the Al gel to fit this model may have resulted from its rapid aging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

zero point of charge of freshly precipitated cu(oh)2 has been determined to lie at pH 7.7 by means of microclectrophoresis technique. Day aged hydroxide shows an acid zpc shift to pH 7.3. these experimental values approximate the equivalence points of cu+ and oh_ ,which can be estimated from the solubility diagram constructed fo gu(oh)2 and cuo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several Chiral BINOL functionalized mesoporous silicas were prepared by post grafting of organosilane derivatives of (S)-BINOL (1,1'-bi-2-naphthol) on SBA-15 and characterized by C-13 CP/MAS NMR, FT-IR, UV-visible absorption spectra, elemental analysis, powder XRD, nitrogen adsorption-desorption isotherms and TEM techniques. Their catalytic properties were demonstrated in enantioselective Morita-Baylis-Hillman reaction of 3-phenylpropanal and cyclohexenone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adsorption of 4,4'-thiobisbenzenethiol (4,4'-TBBT) on a colloidal silver surface and a roughened silver electrode surface was investigated by means of surface-enhanced Raman scattering (SERS) for the first time, which indicates that 4,4'-TBBT is chemisorbed on the colloidal silver surface as dithiolates by losing two H-atoms of the S-H bond, while as monothiolates on the roughened silver electrode. The different orientations of the molecules on both silver surfaces indicate the different adsorption behaviors of 4,4'-TBBT in the two systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous SnO2 and SnO2-Eu3+ nanorods have been facilely prepared using triphenyltin hydroxide microrods as precursors. The porous structure of SnO2 nanorods, which was aggregated by small SnO2 nanocrystallites, has been confirmed by TEM images and nitrogen adsorption-desorption isotherms. The optical property of the porous SnO2-Eu3+ nanorods was investigated by UV-vis absorption and photoluminescence spectra.