139 resultados para Ion exchange resins.
Resumo:
R-phycoerythrin, a light-harvesting protein in some marine algae, and can be widely used in medicine, was isolated and purified from a red alga, Palmaria palmata (Lannaeus) Kuntze, using the streamline column (expanded bed adsorption) combined with ion-exchange chromatography. Because the crude extract was applied to the column upwardly, the column would not be blocked by polysaccharides usually very abundant in the extract of marine alga, this kind of blockage could hardly lie overcome in ordinary chromatographic column. After applying the crude extract containing 0.5 mol/L (NH4)(2)SO4, (NH4)(2)SO4 solution of different concentrations (0.2 mol/L, 0.1 mol/L and 0.05 mol/L) was used to elute the column downwardly and the eluates were collected and desalted. The desalted eluates were then applied onto all ion-exchange chromatographic column loaded with Q-sepharose for further purification of the R-phycoerythrin. Through these two steps, the purity (OD565/OD280) of the R-phycoerythrin from P. palmata was up to 3.5, more than 3.2, the commonly accepted criterion for purity, and the yield of the purified R-phycoerythrin could reach 0.122 mg/g of frozen P. palmata, much higher than that of phycobiliproteins purified with the previous methods. The result indicated that the cost of R-phycoerythrin will drop down with the method reported in this article.
Resumo:
The effects of N (NaNO3) and C (NaAc) source in medium on the expression of tumor necrosis factor-alpha (TNF-alpha) gene in transgenic Anabaena sp. PCC 7120 were compared. The data showed that N source stabilized the expression of foreign protein and C source altered the synthesis of cell walls. Comparing several methods for breaking the cells, supersonic was able to extract TNF-alpha better than others. For purification of TNF-alpha, transgenic Anabaena cells were broken, the extracts were precipitated with ammonia sulfate, and the impure TNF-alpha was eluted from DEAE ion exchange chromatography. Electrophoresis (PAGE-SDS) showed a single band at 17 kD position.
Resumo:
R-phycoerythrin was isolated and purified from a red alga, Polysiphonia urceolata Grev, using Streamline column combined with ion-exchange chromatography or hydroxyapatite chromatography. The purity of R-phycoerythrin isolated by Streamline column was up to 1.66 and the yield of R-phycoerythrin could be as high as 0.68 mg/g frozen P. urceolata. All the eluates from Streamline column were divided into two equivalent parts, respectively. One part was pumped into the ion-exchange column loaded with Q-Sepharose and the other was applied to the adsorption column loaded with hydroxyapatite. The purities of R-phycoerythrin purified using these two methods were both up to 3.26, more than 3.2 the commonly accepted criterion. The yield of purified R-phycoerythrin from the ion-exchange chromatography was 0.40 mg/g frozen P. urceolata and that from the hydroxyapatite chromatography could reach 0.34 mg/g frozen P. urceolata. The purified protein had three absorption peaks at 498, 535, and 565 nm and displayed a fluorescence maximum at 580 nm, which was consistent with the typical spectrum of R-phycoerythrin. The purified R-PE was also identified with electrophoresis. Only one single protein band appeared on native-PAGE with silver staining. SDS-PAGE demonstrated the presence of one 20 kDa major subunit, and one low intensity band corresponding to 33 kDa subunit. The results indicate that using the expanded bed adsorption combined with ion-exchange chromatography or hydroxyapatite chromatography, R-phycoerythrin can be purified from frozen P. urceolata on large scale. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
使用膨化柱和离子交换或羟基磷灰石柱层析相结合的方法,分别从多管藻、坛紫菜及钝顶螺旋藻中分离纯化了R-藻红蛋白溶液和C-藻蓝蛋白。光谱检测及电泳分析结果证明完全符合经典的藻胆蛋白纯度标准。彭化床最突出的优点是克服了常规分离方法堵塞色谱柱的难题,纯化速度快、产量高、不需要常规色谱方法所要求的填料的平衡及粗提液的预处理,仅需一步操作就可以得到满足一般食品添加剂纯度要求的藻胆蛋白,极大地简化了后续的纯化程序,减少了分离纯化的步骤和时间,而其产率及纯度均高于常规的藻胆蛋白分离方法。这同时也降低了藻胆蛋白分离纯化的成本。 本文通过戊二醛或环氧氯丙烷交联的方法,合成了四种壳聚糖-氨基酸共聚小球。并选取吸附性好的戊二醛交联孔球和戊二醛交联微球系统测定了其对R-藻红蛋白和C-藻蓝蛋白的吸附和缓释性能。 纯化了藓羽藻中与其细胞器团聚密切相关的一种凝集素并进行了部分性质的鉴定。N端前15个氨基酸序列及LC-ESI-MS质谱分析结果证明此凝集素属于一种新的蛋白质族。实验证明,凝血活性与细胞器团聚活性并不完全依赖于此凝集素分子相同的结构域。 通过异双功能试剂SPDP处理藓羽藻凝集素使之衍生化,DTT处理R-PE在其分子内引入外源巯基,然后将活化的R-藻红蛋白与凝集素进行交联反应。交联产物经凝胶过滤纯化并检测,但电泳及荧光显微镜检测结果并不能证明交联探针的成功制备。
Resumo:
The vertical fluxes and vertical transferring forms of 18 rare elements were studied for the first time in the coral reef ecosystem of Nansha Islands, South China Sea, by deploying sediment traps, The results showed that the vertical transferring flux of most of the measured rare elements in Yongshu lagoon were higher than that in Zhubi lagoon. The vertical transferring forms of rare elements were mainly in the carbonate form, but Ta, As, Th mainly in the ion-exchange form, Ag in iron-manganese oxide form and Sb in the organic matter + sulphide form. None of the 18 rare elements was transferred mainly in the form of detritus silicate to sea floor. This proved that rare elements originating from the earth's crust were redistributed in sinking particulates after they were brought into ocean. The relation between the fluxes and surface seawater temperature (STT) was also studied. The sensitivity of rare elements to SST was in order: Rb>V>As>Ti>U>Zn>Sb>Hf>Ag>Cs.
Resumo:
Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O (2) (-) )/hydroxyl (center dot OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O (2) (-) scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the center dot OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.
Resumo:
The catalytic decomposition of NO over Ag-ZSM-5 catalyst prepared by ion-exchange was investigated. The exchanged silver in the zeolite was reduced and it collected in the course of the reaction to form silver particles of about 20 nm. The catalytic reaction induced a pronounced restructuring of the Ag particles through preferential formation of the (111) facets. These facets were shown to hind a tightly bound oxygen species (O-gamma). The O-gamma species occupies the active sites for NO adsorption resulting in catalyst deactivation. It could be removed by appropriate reducing agents, such as CO, to recover the active sites at elevated temperatures.
Resumo:
Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coefficient B-2(0) and the magnetic exchange interaction was studied as temperature approaches to 0 K. The results show that the stabilization energy contributed by Tb3+ is linear with crystal field coefficient B-2(0) approximately, but it is insensitive to the change of magnetic exchange interaction for the strong magnetic substances such as TbCo5, Tb2Co17 and Tb2Fe14B compounds.
Resumo:
The fragmentation properties of the product ions [M + 1](+), [M + 2](+) and [M + 3](+) formed by ion-molecule reaction of four cyclopropane derivatives with the ion system of CD3OD were investigated by using collision-induced dissocation technique. The experiment results indicated that the product ions were produced via the H/D exchange reaction between reactants and reactive reagent ions of CD3OD. There are two exchangable hydrogen atoms on the ring of compounds 1 and 2, and only one for compound 3 and 4.
Resumo:
The transfer of chloride ions into a low resistance anion exchange membrane (AEM) was investigated by cyclic voltammetry (CV) and electrochemical impedance spectra. In all cases, concentration polarization of Cl- ions is exterior to the membrane. It controls the flux and produces the limiting currents: either steady state or transient (peak type) current. In CV experiments, when the size of the holes in the membrane was much smaller than the distance between membrane holes, the Cl- anion transfer showed steady state voltammetric behavior. Each hole in the membrane can be regarded as a microelectrode and the membrane was equivalent to a microelectrode array in this condition. When the hole in the membrane was large or the distance between membrane holes was small, the CV curve of the Cl- anion transfer across the membrane showed a peak shape, which was attributed to linear diffusion. In AC impedance measurement, the impedance spectrum of the membrane system was composed of two semicircles at low DC bias, corresponding to the bulk characteristics of the membrane and the kinetic process of ion transfer, respectively. The bulk membrane resistance increases with increasing DC bias and only one semicircle was observed at higher DC bias. The parameters related to kinetic and membrane properties were discussed.
Resumo:
This paper reports on the fabrication and characterization of a ridge optical waveguide in an Er3+/Yb3+ co-doped phosphate glass. The He+ ion implantation (at energy of 2.8 MeV) is first applied onto the sample to produce a planar waveguide substrate, and then Ar+ ion beam etching (at energy of 500 eV) is carried out to construct rib stripes on the sample surface that has been deposited by a specially designed photoresist mask. According to a reconstructed refractive index profile of the waveguide cross section, the modal distribution of the waveguide is simulated by applying a computer code based on the beam propagation method, which shows reasonable agreement with the experimentally observed waveguide mode by using the end-face coupling method. Simulation of the incident He ions at 2.8 MeV penetrating into the Er3+/Yb3+ co-doped phosphate glass substrate is also performed to provide helpful information on waveguide formation.
Resumo:
We investigate theoretically CdTe quantum dots containing a single Mn2+ impurity, including the sp-d exchange interaction between carriers and the magnetic ion and the short-range exchange interaction between electron and hole. We find anticrossing behaviors in the energy spectrum of the electron-hole (e-h) pair that arise from the interplay between exchange interactions and the magnetic field. In addition to the s-d exchange interaction, we find that other mechanisms inducing the anticrossings become important in the strong heavy hole-light hole (hh-lh) mixing regime. The transition strengths between the states with spin projection of Mn2+ ion S-z not equal -5/2 (S-z = -5/2) decrease (increase) with increasing magnetic fields due to the alignment of the Mn2+ spin. The spin splitting of the e-h pair states depends sensitively on the external magnetic and electric field, which reveals useful information about the spin orientation and position of the magnetic ion. Meanwhile, the manipulation of the position of the magnetic ion offers us a way to control the spin splitting of the carriers. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigate theoretically the electron-hole pair states in CdTe quantum dot (QD) containing a single Mn2+ ion by the magneto-optical spectrum tuned by the electric field. It is shown that the electric field does not only tune the spin splitting via the sp-d exchange interaction but also affect significantly the anticrossing behavior in the photoluminescence spectrum. This anticrossing is caused by the s-d exchange interaction and/or the hole mixing effect, which depends sensitively on the shape of the QD. (C) 2008 American Institute of Physics.
Resumo:
With a series of supportive experimental phenomena as induced by ion beam bombardment, energetic beaminduced athermal activation process in Si is demonstrated. This is correlated with phenomena induced by ultrafast energy exchange in condensed matter in general. A critical modelling is presented on the above process and a universal concept: the ultrafast energy exchange-induced soft mode of phonons and the lattice instability in condensed matter are proposed.
Resumo:
A sulfonated dianhydride monomer, 6,6-disulfonic-4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (SBTDA), was successfully synthesized by direct sulfonation of the parent dianhydride, 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), using fuming sulfuric acid as the sulfonating reagent. A series of sulfonated homopolyimides were prepared from SBTDA and various common nonsulfonated diamines. The resulting polymer electrolytes, which contain ion conductivity sites on the deactivated positions of the aryl backbone rings, displayed high proton conductivities of 0.25-0.31 S cm(-1) at 80 degrees C. The oxidative stability test indicated that the attachment of the -SO3H groups onto the dianhydride units did not deteriorate the oxidative stability of the SPI membranes.