125 resultados para Intelligent Fields


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluating the mechanical properties of rock masses is the base of rock engineering design and construction. It has great influence on the safety and cost of rock project. The recognition is inevitable consequence of new engineering activities in rock, including high-rise building, super bridge, complex underground installations, hydraulic project and etc. During the constructions, lots of engineering accidents happened, which bring great damage to people. According to the investigation, many failures are due to choosing improper mechanical properties. ‘Can’t give the proper properties’ becomes one of big problems for theoretic analysis and numerical simulation. Selecting the properties reasonably and effectively is very significant for the planning, design and construction of rock engineering works. A multiple method based on site investigation, theoretic analysis, model test, numerical test and back analysis by artificial neural network is conducted to determine and optimize the mechanical properties for engineering design. The following outcomes are obtained: (1) Mapping of the rock mass structure Detailed geological investigation is the soul of the fine structure description. Based on statistical window,geological sketch and digital photography,a new method for rock mass fine structure in-situ mapping is developed. It has already been taken into practice and received good comments in Baihetan Hydropower Station. (2) Theoretic analysis of rock mass containing intermittent joints The shear strength mechanisms of joint and rock bridge are analyzed respectively. And the multiple modes of failure on different stress condition are summarized and supplied. Then, through introducing deformation compatibility equation in normal direction, the direct shear strength formulation and compression shear strength formulation for coplanar intermittent joints, as well as compression shear strength formulation for ladderlike intermittent joints are deducted respectively. In order to apply the deducted formulation conveniently in the real projects, a relationship between these formulations and Mohr-Coulomb hypothesis is built up. (3) Model test of rock mass containing intermittent joints Model tests are adopted to study the mechanical mechanism of joints to rock masses. The failure modes of rock mass containing intermittent joints are summarized from the model test. Six typical failure modes are found in the test, and brittle failures are the main failure mode. The evolvement processes of shear stress, shear displacement, normal stress and normal displacement are monitored by using rigid servo test machine. And the deformation and failure character during the loading process is analyzed. According to the model test, the failure modes quite depend on the joint distribution, connectivity and stress states. According to the contrastive analysis of complete stress strain curve, different failure developing stages are found in the intact rock, across jointed rock mass and intermittent jointed rock mass. There are four typical stages in the stress strain curve of intact rock, namely shear contraction stage, linear elastic stage, failure stage and residual strength stage. There are three typical stages in the across jointed rock mass, namely linear elastic stage, transition zone and sliding failure stage. Correspondingly, five typical stages are found in the intermittent jointed rock mass, namely linear elastic stage, sliding of joint, steady growth of post-crack, joint coalescence failure, and residual strength. According to strength analysis, the failure envelopes of intact rock and across jointed rock mass are the upper bound and lower bound separately. The strength of intermittent jointed rock mass can be evaluated by reducing the bandwidth of the failure envelope with geo-mechanics analysis. (4) Numerical test of rock mass Two sets of methods, i.e. the distinct element method (DEC) based on in-situ geology mapping and the realistic failure process analysis (RFPA) based on high-definition digital imaging, are developed and introduced. The operation process and analysis results are demonstrated detailedly from the research on parameters of rock mass based on numerical test in the Jinping First Stage Hydropower Station and Baihetan Hydropower Station. By comparison,the advantages and disadvantages are discussed. Then the applicable fields are figured out respectively. (5) Intelligent evaluation based on artificial neural network (ANN) The characters of both ANN and parameter evaluation of rock mass are discussed and summarized. According to the investigations, ANN has a bright application future in the field of parameter evaluation of rock mass. Intelligent evaluation of mechanical parameters in the Jinping First Stage Hydropower Station is taken as an example to demonstrate the analysis process. The problems in five aspects, i. e. sample selection, network design, initial value selection, learning rate and expected error, are discussed detailedly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main research projects reported in this paper are the establishment of a luminescence (OSL/TL) dating laboratory in The Institute of Geology and Geophysics, CAS, and studies on OSL dating technique and protocol of sediments from North China. These projects have been suggested in order to fit in with the needs of research developments in environmental changes, in particular the aridity and desertification in North China. A new luminescence dating laboratory in which there are a Rise TL/OSL-DA-15B/C reader with Sr-90 beta source, a set of Little More Tape 9022 alpha and beta irradiators, three set of Daybreak 583 intelligent alpha counters and sample preparation system has been set up in the Institute in June 2001. The courses of the establishment of a new laboratory involved a series of technical works, besides making a suitable choice of the equipment, as follows: installing and testing TL/OSL reader, calibrating the dose rate of the beta and alpha sources in the irradiators with the standard sources, testing and calibrating the count rates of the thick source alpha counting in the alpha counters with a standard sample, and then dating of the know age samples to check and examine the OSL/TL dating system. All data obtained from above calibrations and tests show that the established OSL/TL system, including the used equipment in it, can be used to determine age of the geological and archaeological samples with an error of equivalent dose (De) of less than 5%. The OSL dates of several sediment samples obtained from the system are good agreement with those from the OSL dating laboratory in Hong Kong University and ~(14)C dates within 1 - 2 standard deviations. The studies on OSL dating technique and protocol of sediment samples being in progress involve the De determinations with single aliquot regeneration (SAR) (Murray and Wintle, 2000) of the coarse grain quartz from sand dune samples and comparison of the De determinations obtained from SAR with those measured by using multiple aliquot regeneration of loess fine grains. The preliminary results from these research works are shown as follows. The very low natural equivalent dose (De) of about 0.012 - 0.03 Gy, corresponding age of less than 10 years, for BLSL (blue light stimulated luminescence) of the coarse grain quartz from modern sand dune samples in Horqin sand fields has been determined with both the SAR and multiple aliquot regeneration (MAR) techniques. This imply that the BLSL signal zeroing of the quartz could be reached before burying of the sand in Horqin sand fields. The De values and ages of the coarse grain quartz measured with SAR protocol are in good agreement with those obtained from multiple aliquot technique for the modern sand dune samples, but the errors of De from the MAR is greater than those from the SAR. This may imply that the higher precision of age determination for younger sand dune samples could be achieved with the SAR of coarse grain quartz. The MAR combining with "Australian Slide method" may be a perfect choice for De measurements of loess fine grain samples on the basis of analysis of De values obtained from the SAR and from the MAR. The former can be employed to obtain a reliable age estimate of loess sample as older as approximately SO ka BR There is a great difference between De determinations from the (post-IR) OSL of the SAR (Roberts and Wintle, 2001) and those from independent or expected estimates for the older samples. However, the age estimates obtained from the (post-IR) OSL of the SAR are mostly closed to the independent age determinations for the younger (age less than 10 ka) fine grain samples. It may be suggested that the (post-IR) OSL of the SAR protocol of the fine grain fraction would be a suitable choice to dating of the younger samples, but may be unsuitable for the older samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of laser-field parameters, such as intensity and pulse width, on the population of molecular excited state is investigated by using the time-dependent wavepacket method. For a two-state system in intense laser fields, the populations in the upper and lower states are given by the wavefunctions obtained by solving the Schrodinger equation through split-operator scheme. The calculation shows that both the laser intensity and the pulse width have a strong effect on the population in molecular excited state, and that as the common feature of light-matter interaction (LMI), the periodic changing of the population with the evolution time in each state can be interpreted by Rabi oscillation and area-theorem. The results illustrate that by controlling these two parameters, the needed population in excited state of interest can be obtained, which provides the foundation of light manipulation of molecular processes. (C) 2005 Elsevier B.V. All rights reserved.