131 resultados para Hydrochemical processes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research on mechanical effects of water-rock and soil interaction on deformation and failure of rocks and soils involves three aspects of mechanics, physics and chemistry. It is the cross between geochemistry and rock mechanics and soil mechanics. To sum up, the mechanical effects of water-rock and soil interaction is related to many complex processes. Research in this respect has been being an important forward field and has broad prospects. In connection with the mechanism of the effects of the chemical action of water-rock on deformation and failure of rocks and soils, the research significance, the present state, the developments in this research domain are summarized. Author prospects the future of this research. The research of the subject should be possessed of important position in studying engineering geology and will lead directly to a new understand on geological hazard and control research. In order to investigation the macroscopic mechanics effects of chemical kinetics of water-rock interaction on the deformation and failure, calcic rock, red sandstone and grey granite reacting chemically with different aqueous solution at atmospheric temperature and atmospheric pressure are uniaxially compressed. The quantitative results concerning the changes of uniaxially compressive strength and elastic modulus under different conditions are obtained. It is found that the mechanical effects of water on rock is closely related to the chemical action of water-rock or the chemical damage in rock, and the intensity of chemical damage is direct ratio to the intensity of chemical action in water-rock system. It is also found that the hydrochemical action on rock is time-dependent through the test. The mechanism of permeation and hydrochemical action resulting in failure of loaded rock mass or propagation of fractures in rocks would be a key question in rock fracture mechanics. In this paper, the fracture mechanical effects of chemical action of water-rock and their time- and chemical environment-dependent behavior in grey granite, green granite, grey sandstone and red sandstone are analyzed by testing K_(IC) and COD of rock under different conditions. It is found that: ①the fracture mechanical effect of chemical action of water-rock is outstanding and time-dependent, and high differences exist in the influence of different aqueous solution, different rocks, different immersion ways and different velocity of cycle flow on the fracture mechanical effects in rock. ②the mechanical effects of water-rock interaction on propagation of fractures is consistent with the mechanical effects on the peak strength of rock. ③the intensity of the mechanical fracture effects increases as the intensity of chemical action of water-rock increases. ④iron and calcium ion bearing mineral or cement in rock are some key ion or chemical composition, and especially iron ion-bearing mineral resulting in chemical action of water-rock to be provided with both positive and negative mechanical effects on rock. Through the above two tests, we suggest that primary factors influencing chemical damage in rock consist of the chemical property of rock and aqueous solution, the structure or homogeneity of rocks, the flow velocity of aqueous solution passing through rock, and cause of formation or evolution of rock. The paper explores the mechanism on the mechanical effects of water-rock interaction on rock by using the theory of chemistry and rock fracture mechanics with chemical damage proposed by author, the modeling method and the energy point of view. In this paper, the concept of absorbed suction between soil grains caused by capillary response is given and expounded, and the relation and basic distinction among this absorbed suction, surface tension and capillary pressure of the soil are analyzed and established. The law of absorbed suction change and the primary factors affecting it are approached. We hold that the structure suction are changeable along with the change of the saturation state in unsaturated soils. In view of this, the concept of intrinsic structure suction and variable structure suction are given and expounded, and this paper points out: What we should study is variable structure suction when studying the effective stress. By IIIy κHH's theory of structure strength of soils, the computer method for variable structure suction is analyzed, the measure method for variable structure suction is discussed, and it reach the conclusions: ①Besides saturation state, variable structure suction is affected by grain composition and packing patter of grains. ②The internal relations are present between structure parameter N in computing structure suction and structure parameter D in computing absorbed suction. We think that some problems exit in available principle of effective stress and shear strength theory for unsaturated soil. Based on the variable structure suction and absorbed suction, the classification of saturation in soil and a principle of narrow sense effective stress are proposed for unsaturated soils. Based on generalized suction, the generalized effective stress formula and a principle of generalized effective stress are proposed for unsaturated soils. The experience parameter χ in Bishop's effective stress formula is defined, and the principal factors influencing effective stress or χ. The primary factor affecting the effective stress in unsaturated soils, and the principle classifying unsaturated soils and its mechanics methods analyzing unsaturated soils are discussed, and this paper points out: The theory on studying unsaturated soil mechanics should adopt the micromechanics method, then raise it to macromechanics and to applying. Researching the mechanical effects of chemical action of water-soil on soil is of great importance to geoenvironmental hazard control. The texture of soil and the fabric of soil mass are set forth. The tests on physical and mechanical property are performed to investigate the mechanism of the positive and negative mechanical effects of different chemical property of aqueous solution. The test results make clear that the plastic limit, liquid limit and plasticity index are changed, and there exists both positive and negative effects on specimens in this test. Based on analyzing the mechanism of the mechanical effects of water-soil interaction on soil, author thinks that hydrochemical actions being provided with mechanical effects on soil comprise three kinds of dissolution, sedimentation or crystallization. The significance of these tests lie in which it is recognized for us that we may improve, adjust and control the quality of soils, and may achieve the goal geological hazard control and prevention.The present and the significance of the research on environmental effects of water-rock and soil interaction. Various living example on geoenvironmental hazard in this field are enumerated. Following above thinking, we have approached such ideals that: ①changing the intensity and distribution of source and sink in groundwater flow system can be used to control the water-rock and soil interaction. ②the chemical action of water-rock and soil can be used to ameliorate the physical and mechanical property of rocks and soils. Lastly, the research thinking and the research methods on mechanical effects and environmental effects of water-rock and soil interaction are put forward and detailed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

由于缺乏相应的沉积地层,贵州新生代地质、环境演化恢复一直是学术界的难点问题。夷平面研究的兴起,为陆地地壳抬升、地貌演变等反演提供了理论基础,而风化壳正是夷平面研究的重要替代对象,尤其是对各类沉积地层不发育的地区。因而,贵州高原各级台地上发育有较为广泛的红色风化壳自然地、就成了主要研究载体。然而一与其它岩类不同,碳酸盐岩风化成土作用过程研究并没有得到同等重视,其研究范围和程度均很不充分。显然,要想利用碳酸盐岩风化壳进行夷平面等地质、地貌意义研究,就必需详细了解贵州或中国南方碳酸盐岩风化成土的基本过程。也只有如此,才能明确各种对比指标的使用条件和范围,才能明确各种测年结果的具体意义,才能真正地通过贵州碳酸盐岩风化壳获取全省地质、环境演化信息。本论文通过对贵州省岩溶台地碳酸盐岩石灰土、红色风化壳剖面形成地球化学过程的剖析,开展石灰土与红色风化壳之间的关联和差异性综合对比、红色风化壳之间发育程度的比较,以及风化壳剖面尝试性的侧年等方面研究,取得了以下儿点认识:1、石灰土形成地球化学过程及对比通过矿物组成、粒度分布特征、地球化学方法判别,确定了本文所选石灰土剖面物质来源于下伏碳酸盐岩中的酸不溶物,是碳酸盐岩风化后酸不溶物原地残余堆积的结果。石灰土形成的地球化学过程都遵循碳酸盐岩风化成土之两阶段模式:母岩-酸不溶物,大量可溶性物质Ca、Mg、Mn、P、Na淋失,而Si、K·Fe、Al、Ti则相对富集。该过程的矿物组成变化表现为,伴随碳酸盐矿物(方解石、白云石等)的溶解、迁移,硅酸盐相矿物(长石、2:1型粘土矿物等)残余、累积。酸不溶物,土层或土层的演化,K、Si(长石、伊利石)不断淋失,而Al(伊利石、高岭石、三水铝石)、Fe(针铁矿、赤铁矿等)逐渐富集,体现出脱硅、富铝(铁)过程。我们强调碳酸盐岩风化成土分为两个阶段,但也认识到风化作用是综合的、复杂的:在碳酸盐矿物大量淋失过程中,同时也进行着酸不溶物的风化。石灰土分为原生和次生两种成因类型。原生石灰土的风化程度总体较低,剖面中还残留一定量的CaCO3,剖面从下到上矿物组成、地球化学各种指标具有逐渐演化的过渡特征。原生石灰上土层演化过程显示出正风化序列,从下到上风化程度逐渐增大、可溶性物质逐渐减少、稳定和相对稳定组分(Al、Fe.、REE)含量不断增大。另外,主量元素的质量迁移系数在剖面中的变化与风化程度呈明显的相关性。而次生石灰土不但具有很高的风化程度,而且剖面无过渡特征,显示可能是由遭受强烈风化作用的物质直接转变形成的。剖面中也含有一定量后期加入的碳酸盐,但与高CIA值特征不相匹配;SiO2、Al2O3、Fe2O3组分具有不同的变化特征,与)成化程度无明显关联;REE在剖面岩一上界面出现富集层。2、碳酸盐岩红色风化壳形成地球化学过程及其与石灰土的对比红色风化壳形成的地球化学过程也遵循碳酸盐岩风化成土之两阶段模式:母岩一酸不溶物,大量可溶性物质Ca、Mg、Mn、P、Na淋失,而Si、K、Fe、Al、Ti则相对富集。该过程的矿物组成变化表现为,伴随碳酸盐矿物(方解石、白云石等)的溶解、迁移,硅酸盆相矿物(长石、2:1型粘土矿物等)残余、累积。酸不济物一土层或上层的演化,K、Si(长石、伊利石)不断淋失,而Al(伊利石、高岭石、三水铝石)、Fe(针铁矿、赤铁矿等)逐渐富集,体现出脱硅、富铝(铁)过程。石灰土与红色风化壳之间既存在共性,又有一定的差异性。红色风化壳与原生石灰土一样都具有过渡特征,但后者仅在剖面下部出现一定的过渡层位;原生石灰士的城化程度远低于红色风化壳,仅与后者底部土层相当;原生石灰土不具有红色风化壳之岩-土REE(超常)富集层。总体上,原生石灰土可以作为红色风化壳的前身。次生石灰土与红色风化壳在矿物组成、风化程度等各种地球化学指标等都十分接近(略低),显示与红色风化壳之间存在某种关联:由红色风化壳物质直接转变,或由酸不溶物已强烈风化的(白云岩)岩粉、碎裂岩风化形成。3、碳酸盐岩风化成土母岩差异性碳酸盐岩风化成土存在母岩差异性,石灰土母岩差异性较为明显,而红色风化壳的母岩差异性较弱,体现出红色风化壳的均一化特征。石灰土母岩差异性体现为:母岩为灰岩的石灰土剖面主量元素含量变化特征较为一致,而白云岩则具有不同的变化;灰岩石灰土Fe3+、Al具有不同的富集、亏损特征,且具有富集层的补偿亏损层,而白云岩石灰上两组分都呈现无补偿层位的相同富集态势;灰岩石灰土剖面出现负Eu异常和具以Gd为中心的倒“V”型MREE稀土富集特征(母岩标准化),而白云岩石灰土无明显Eu异常和具L既E或HREE稀士.富集特征;灰岩和白云岩石灰土的微量元素富集、亏损特征也有所不同,前者从上到下逐渐富集,而后者无明显变化趋势。红色风化壳形成的基本过程、主量元素地球化学行为无明显的母岩相关性,没有如石灰土剖面灰岩和白云岩之间存在的差异性,显示出红土化作用的均一化过程;微量元素中受重矿物影响的元素与母岩类型有一定的关联,但大多数元素的亏损、富集等与具体剖面的微环境关系密切。4、碳酸盐岩红色风化壳发育程度的对比及意义多利指标对比显示所选红色风化壳的风化程度有一定的强弱差别:平坝剖面>湖潮剖面>天龙剖面、大兴剖面>花溪剖面、新蒲剖面,但这种差异性不足以否定各剖面隶属于贵州山盆期广泛夷平面的基本推测。各剖面之间的微弱差异是红色风化壳形成时纬度分带和垂向分带的体现。低纬度的平坝、湖潮、天龙剖面经历的风化作用强于高纬度的新蒲、大兴剖面;高海拔的新蒲剖面风化程度低于海拔低的大兴剖面。5、红色风化壳次生石英裂变径迹测年红色风化壳次生石英裂变径迹方法测年尝试,得到一定的结果和认识:晶形相对较好的石英,是次生的,与母岩中碎屑及成岩阶段没有关联;各剖面上部与中、下部次生石英的诱发裂变径迹的密度有着明显的区别,可能暗示它们的形成环境不同;名一剖面石英的形成或退火年龄分布较为分散,1.2-25.2Ma,同一剖面的石英年龄也不均一,变化较大;从下到上,年龄值呈现出逐渐减小的规律性,与风化作用的正常序列相反。如果能确切其成因,次生石英裂变径迹年代学研究将是确定风化壳形成时代及揭示主要风化作用信,却钩有利武器。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The micro-pore configurations on the matrix surface were studied by SEM. The matrix of molten carbonate fuel cell (MCFC) performance was also improved by the better coordination between the reasonable radius of the micro-pores and the higher porosity of the cell matrix. The many and complicated micro-pore configurations in the cell matrix promoted the volatilization of the organic additives and the burn of polyvinyl butyral (PVB). The smooth volatilization of the organic additives and the complete burn of PVB were the significant factors for the improved MCFC performance. Oxygen diffusion controlled-burn mechanism of PVB in the cell matrix was proposed. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences has a long history in the R&D of catalysts and catalytic processes for petroleum and natural gas conversions in China. In this paper, results and features of some commercialized petrochemical catalysts and processes as well as newly developed processes for natural gas conversion in the pilot-plant stage are described. (C) 1999 Elsevier Science B.V. All rights reserved.