145 resultados para Hindu astronomy.
Resumo:
The shell effect is included in the improved isospin dependent quantum molecular dynamics model in which the shell correction energy of the system is calculated by using the deformed two-center shell model. A switch function is introduced to connect the shell correction energy of the projectile and the target with that of the compound nucleus during the dynamical fusion process. It is found that the calculated capture cross sections reproduce the experimental data quantitatively at the energy near the Coulomb barrier. The capture cross sections for reaction (35) (80) Br + (82) (208) Pb -> (117) (288) X are also calculated and discussed.
Resumo:
The proton radioactivity half-lives of spherical proton emitters are investigated within a generalized liquid drop model (GLDM), including the proximity effects between nuclei in a neck and the mass and charge asymmetry. The penetrability is calculated in the WKB approximation and the assault frequency is estimated by the quantum mechanism method considering the structure of the parent nucleus. The spectroscopic factor is taken into account in half-life calculation, which is obtained by employing the relativistic mean field (RMF) theory. The half-lives within the GLDM are compared with the experimental data and other theoretical values. The results show that the GLDM works quite well for spherical proton emitters when the assault frequency is estimated by the quantum mechanical method and the spectroscopic factor is considered.
Resumo:
The highly charged ion Ar-40(16+) with the velocity (kinetic energy E (K)=150 keV, velocity V=8.5x10(5) m/s) smaller than Bohr velocity (V (Bohr)=2.9x10(6) m/s) was found to hove impacts on the surfaces of metals Ni, Mo, Au and Al, and the Ar atomic infrared light lines and X-rays spectra were simultaneously measured. The experimental results show that the highly charged ion that captures electrons is neutralized, and the multiply-excited hollow atom forms. The hollow atom cascade decay radiates lights from infrared to X-ray spectrum. The intensity of infrared lights shows that the metallic work functions play an important role in the neutralization process of highly charged ions during their interaction with metallic surfaces, which verifies the classical over-the-barrier model.
Resumo:
Pellet target is one of the main candidate targets in CSRm (cooler storage ring’s main ring) for hadron physics studies. Pellet speed is an important physical parameter for the target. Larger pellet speed could shorten the interacting time interval between the pellet and the cyclotron beam, and thus results in a small temperature variation for the pellet. This could make the pellet facility work in a stable con-dition. A fluid dynamic simulation was carried out for the pellet speed, and it was found that the maxi-mum speed for the target pellet may be restricted to about 100 m/s even if all working parameters were set to their optimal values.
Resumo:
The principle and technique details of recoil ion momentum imaging are discussed and summarized. The recoil ion momentum spectroscopy built at the Institute of Modern Physics (Lanzhou) is presented. The first results obtained at the setup are analyzed. For 30 keV He2+ on He collision, it is found that the capture of single electron occurs dominantly into the first excited states, and the related scattering angle results show that the ground state capture occurs at large impact parameters, while the capture into excited states occurs at small impact parameters. The results manifest the collision dynamics for the sub-femto-second process can be studied through the techniques uniquely. Finally, the future possibilities of applications of the recoil ion momentum spectroscopy in other fields are outlined.
Resumo:
High-spin states in Pt-187 were studied via the Yb-173(O-18, 4n) reaction. Rotational bands based on the vi(13/2), v7/2(-)[503], vi(13/2)(2)vj, v3/2(-)[512] and v1/2(-)[521] configurations were observed, and interpreted within the framework of the cranked shell model. The TRS calculations show that the vi(13/2) band has an appreciable negative gamma deformation, and the negative-parity bands tend to have a near prolate shape with small positive gamma values. Experimental values of B(M1)/B(E2) ratios have been extracted and compared with theoretical values from the semi-classical Donau and Frauendof approach, strongly suggesting a low frequency pi h(9/2) alignment in the v7/2(-)[503] band.
Resumo:
L-shell X-ray spectra of Mo surface induced by Xe25+ and Xe29+ were measured. The X-ray intensity was obtained in the kinetic energy range of the incident ions from 350 to 600 keV. The relationship of X-ray intensity with kinetic energy of the projectile and its charge state were studied, and the simple explanation was given.
Resumo:
The X-ray spectra of Nb surface induced by Arq+ (q = 16,17) ions with the energy range from 10 to 20 keV/q were studied by the optical spectrum technology. The experimental results indicate that the multi-electron excitation occurred as a highly charged Ar16+ ion was neutralized below the metal surface. The K shell electron of Ar16+ was excited and then de-excited cascadly to emit K X-ray. The intensity of the X-ray emitted from K shell of the hollow Ar atom decreased with the increase of projectile kinetic energy. The intensity of the X-ray emitted from L shell of the target atom Nb increased with the increase of projectile kinetic energy. The X-ray yield of Ar17+ is three magnitude orders larger than that of Ar16+.
Resumo:
The total reaction cross section (1724 +/- 93 mb) of B-17 at the energy of 43.7 A MeV on C target has been measured by using the transmission method at the Radioactive Ion Beam Line in Lanzhou (RIBLL). Assuming B-17 consists of a core B-15 plus two halo neutrons, the total cross section of B-17 on C target was calculated with the zero-range Glauber model, where double Gaussian density distributions and Gaussian plus HO density distributions were used. It can fit the experimental data very well. The characteristic of halo structure for B-17 was found with a large diffusion of the neutrons density distribution.
Resumo:
Using the slow highly charged ions Xe-129(q+) (q = 25, 26, 27; initial kinetic T-0 <= 4.65 keV/a.u.) to impact Au surface, the Au atomic M alpha characteristic X-ray spectrum is induced. The result shows that as long as the charge state of projectile is high enough, the heavy atomic characteristic X-ray can be effectively excited even though the incident beam is very weak (nA magnitude), and the X-ray yield per ion is in the order of 10(-8) and increases with the kinetic energy and potential energy of projectile. By measuring the Au M alpha-X-ray spectra, Au atomic N-level lifetime is estimated at about 1.33x10(-18) s based on Heisenberg uncertainty relation.
Resumo:
Zinc oxide films with c-axis preferred orientation were deposited on silicon (100) substrates by radio frequency (RF) reactive sputtering. The properties of the samples were characterized by X-ray diffractometer, X-ray photoelectron spectroscopy and fluorescent-spectrophotometer. The effect of sputtering power and substrate temperature on the structural and photoluminescent (PL) properties of the ZnO films was investigated. The results indicated that when the sputtering power is 100 W and the substrate temperature is 300-400 degrees C, it is suitable for the growth of high c-axis orientation and small strain ZnO films. A violet peak at about 380 nm and a blue band at about 430 nm were observed in the room temperature photoluminescence spectra, and the origin of blue emission was investigated.
Resumo:
According to the method of path integral quantization for the canonical constrained system in Becchi-Rouet-Stora-Tyutin scheme, the supersymmetric electromagnetic interaction system was quantized. Both the Hamiltonian of the supersymmetric electromagnetic interaction system in phase space and the quantization procedure were simplified. The BRST generator was constructed, and the BRST transformations of supersymmetric fields were gotten; the effective action was calculated, and the generating functional for the Green function was achieved; also, the gauge generator was constructed, and the gauge transformation of the system was obtained. Finally, the Ward-Takahashi identities based on the canonical Noether theorem were calculated, and two relations between proper vertices and propagators were obtained.
Resumo:
The combination of ionizing radiation and gene therapy has been investigated. However, there are very few reports about the combination of heavy-ion irradiation and gene therapy. To determine if the pre-exposure to low-dose heavy ion beam enhances the suppression of AdCMV-p53 on non-small lung cancer (NSLC), the cells pre-irradiated or non-irradiated were infected with 20, 40 MOI of AdCMV-p53. Survival fraction and the relative biology effect (RBE) were determined by clonogenic assay. The results showed that the proportions of p53 positive cells in C-12(6+) beam induced AdCMV-p53 infected cells were more than 90%, which were significantly more than those in gamma-ray induced AdCMV-p53 infected cells. The pre-exposure to low-dose 12C6+ beam significantly prevented the G(0)/G(1) arrest and activated G(2)/M checkpoints. The pre-exposure to C-12(6+) beam significantly improved cell to apoptosis. RBEs for the C-12(6+)+ AdCMV-p53 infection groups were 30%-60%,20% -130% and 30%-70% more than those for the C-12(6+)_irradiated only, AdCMV-p53 infected only, and gamma-irradiation induced AdCMVp53 infected groups, respectively. The data suggested that the pre-exposure to low-dose C-12(6+) beam significantly promotes exogenous p53 expression in NSLC, and the suppression of AdCMV-p53 gene therapy on NSLC.