124 resultados para HIGH-ENERGY EMISSION
Resumo:
The excitation functions of elastic scattering proton which were measured with inverse kinematics of elastic resonance scattering reactions in GANIL and MSU have been fitted by the multi-energy level R-matrix theory. The final result shows that the new energy levels order for nucleus N-11 should be 1/2(+), 1/2(-), 5/2(+), 3/2(+), 3/2(-), 5/2(+), 7/2(-), which is consistent with the experimental results of Be-11 (the mirror nucleus of N-11) and the theoretical calculation of N-11 with GCM theory.
Resumo:
Pure metal powder mixtures of W and Mg at the desired composition were milled in conventional high-energy ball mill, and amorphous alloy W50Mg50 was obtained after milling for 20 h. The structure evolution of elemental powder mixtures was studied following milling and subsequent high pressure and high temperature treatment. The amorphous alloy transform into a nanocrystalline material below 1050 degreesC at 4.0 GPa. On increasing the temperature, it transforms into a mixture of several new crystal phases under high-pressure condition. It also found that both mechanical alloying and high pressure treatment are the two necessary processes to form the nanocrystalline and the new phases.
Resumo:
Oxyapatite NaY9Si6O26 was prepared by sol-gel method. By choosing the precursors, a single phase compound was obtained. This soft chemical method lowered the reaction temperature by 100degreesC compared with the solid state method. Its morphology was studied by transmission electron microscopy (TEM). Several rare earth ions (Eu3+, Tb3+, Dy3+) and Pb2+ ion were doped in this compound. The high resolution emission spectrum of Eu3+ showed that rare earth ions occupied two yttrium sites. In spite of the charge imbalance of Pb2+ with the cations in this compound, it was found that Pb2+ could emit in UV range and transfer its excitation energy to Dy3+ ion.
Resumo:
Polytetrafluoroethylene (PTFE) has never been reported to form a network structure when subjected to high energy radiation. Results obtained in this work indicates that when irradiation is performed under 330-340-degrees-C in vacuo PTFE can be crosslinked