122 resultados para Guaratuba bay
Resumo:
Research on corrosion of steel structures in various marine environments is essential to assure the safety of structures and can effectively prolong their service life. In order to provide data for anticorrosion design of oil exploitation structures in the Bohai Bay, the corrosion behaviour and properties of steel in beach soil, using typical steel samples (Q235A carbon steel and API 5Lx52 pipeline steel) buried 0.5, 1.0 and 1.5 m deep under typical beach soils in Tanggu, Yangjiaogou, Xingcheng, Yingkou and Chengdao for 1-2 years were studied. The carbon steel and pipeline steel were both corroded severely in the beach soil, with the form of corrosion being mainly uniform with some localised attack (pitting corrosion). The corrosion rate of the carbon steel was up to 0.16 mm/year with a maximum penetration depth of 0.76 mm and that of the pipeline steel was up to 0.14 mm/year, with a maximum penetration depth of 0.53 mm. Compared with carbon steel, the pipeline steel generally had better corrosion resistance in most test beach soils. The corrosion rates and the maximum corrosion depths of carbon steel and pipeline steel were in the order: Tanggu>Xingcheng>Chengdao>Yingkou>Yangjiaogou with corrosion altering with depth of burial. The corrosion of steel in the beach soil involves a mixed mechanism with different degrees of soil aeration and microbial activity present. It is concluded that long term in situ plate laying experiments must be carried out to obtain data on steel corrosion in this beach soil environment so that the effective protection measures can be implemented.
Resumo:
Seasonal investigations of size-fractionated biomass and production were carried out from February 1992 to May 1993 in Jiaozhou Bay, China. Microplankton assemblages were separated into three fractions: pico-(0.7-2 mu m), nano- (2-20 mu m) and netplankton (20-200 mu m). The biomass was measured as chlorophyll a (Chl a), particulate organic carbon (POC) and particulate organic nitrogen (PON). The production was determined by C-14 and N-15 tracer techniques. The seasonal patterns in biomass, though variable, were characterized by higher values in spring and lower values in autumn and summer (for Chl a only). The seasonal patterns in production, on the other hand, were more clear with higher values occurring in summer and spring, and lower values occurring in autumn and winter. Averaged over the whole study period, the respective proportions of total biomass accounted for by net-, nano- and picoplankton were 26, 45 and 29% for Chl a, 32, 33 and 35% for POC, and 26, 32 and 42% for PON. The contributions to total primary production by net-, nano- and picoplankton were 31, 35 and 34%, respectively. The respective proportions of total NH4+-N uptake accounted for by net-, nano- and picoplankton were 28, 33 and 39% in the daytime, and 10, 29 and 61% at night. The respective contributions to total NO3--N uptake by net-, nano- and picoplankton were 37, 40 and 23% in the daytime, and 13, 23 and 64% at night. Some comprehensive ratios, including C/N biomass ratio, Chl a/C ratio, C uptake/Chl a ratio, C:N uptake ratio and the f-ratio, were also calculated size separately, and their biological and ecological meanings are discussed.