416 resultados para Glass ceramic
Resumo:
For the first time, to the best of our knowledge, a radially polarized laser pulse was produced from a passively Q-switched Nd:YAG ceramic microchip laser with a piece of Cr4+:YAG crystal as the saturable absorber and multilayer concentric subwavelength grating as the polarization-selective output coupler. The averaged laser power reached 450 mW with a slope efficiency of 30.2%. The laser pulse had a maximum peak power of 759 W, a minimum pulse duration of 86 ns, and a 6.7 kHz repetition rate at 3.7 W absorbed pump power. The polarization degree of the radially polarized pulse was measured to be as high as 97.4%. Such a radially polarized laser pulse with a high peak power and a short width is important to numerous applications such as metal cutting. (C) 2008 Optical Society of America
Resumo:
Cylindrical vector beams were produced from laser diode end-pumped Nd:YAG ceramic microchip laser by use of two types of subwavelength multilayer gratings as the axisymmetric-polarization output couplers respectively. The grating mirrors are composed of high- and low-refractive-index (Nb2O5/SiO2) layers alternately while each layer is shaped into triangle and concentric corrugations. For radially polarized laser output, the beam power reached 610mW with a polarization extinction ratio ( PER) of 61: 1 and a slope efficiency of 68.2%; for azimuthally polarized laser output, the beam power reached 626mW with a PER of 58: 1 and a slope efficiency of 47.6%. In both cases, the laser beams had near-diffraction limited quality. Small differences of beam power, PER and slope efficiency between radially and azimuthally polarized laser outputs were not critical, and could be minimized by further optimized adjustment to laser cavity and the reflectances of respective grating mirrors. The results manifested, by use of the photonic crystal gratings mirrors and end-pumped microchip laser configuration, CVBs can be generated efficiently with high modal symmetry and polarization purity. (C) 2008 Optical Society of America.
Resumo:
In this paper, we demonstrated a dual-wavelength competitive output in Nd:Y3SC1.5Al3.5O12 ceramic disk laser. Different dual-wavelength output behaviors for Nd:YSAG and Nd:YAG ceramic disk laser were investigated and discussed. By applying the energy transfer model, we suggested the reasonable explanation for this new phenomenon as the disordered replacing of Al3+ ions by Sc3+ ions. The main advantage of the dual-wavelength ceramic laser is the possibility to serve as the seed source to generate Terahertz radiation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The optical loss coefficient at 1053-nm wavelength, influenced by Fe ions in N31-type Nd-doped phosphate laser glass, was determined precisely and analyzed in detail. It is found that the optical loss coefficient per unit of Fe concentration (cm^(-1)/ppmw) increases with Fe concentration in the range of 0---300 ppmw, but it approaches a constant as the Fe concentration is larger than 300 ppmw. Such a concentration effect is due to a shift in the redox equilibrium between Fe3+ and Fe2+ ions in the glass. The effect of oxygen pressure, temperature, and variable valence states of other metal ions in glass samples on the optical loss is also discussed.
Resumo:
A novel Vb(3+)-Er-(3+) codoped phosphate glass for high power flashlamp pumping and high repetition rate laser at 1.54 mu m, designated EAT5-2, is developed. The weight-loss rate of is 1.3 x 10(-5) gcm(-2) h(-1) in boiling water, which is comparable to Kigre's QX-Er glass. Some spectroscopic parameters are analysed by Judd-Ofelt theory and McCumber theory The emission cross section is calculated to be 0.73 x 10(-20) cm(2). The thermo-mechanical properties of EAT5-2 are modified after an ion-exchange chemical strengthening process in a KNO3/NaNO3 molten salt bath. The thresholds for optical damage from the flashlamp pumping are tested on glass rods. A repetition rate of 15 Hz is achieved for chemically strengthened glass. The laser experimental results at. 1.54 mu m from flashlamp pumping are also reported.
Resumo:
In this study, we examined the microstructure of crystals generated in borate glass by femtosecond laser irradiation (FSLI). The distribution of the high-temperature and low-temperature phases of barium metaborate crystals produced in the borate glass is analyzed using Raman spectroscopy. We then propose the possible mechanism for the generation of crystals in glass by FSLI.
Resumo:
This letter reports the ultrabroadband infrared luminescence from 1000- to 1700-nm wavelength range and demonstrate optical amplification at the second optical communication window in a novel bismuth-doped germanosilicate glass. The full-width at half-maximum of the luminescence is about 300 mn and the optical gain is larger than 1.37 within the wavelength region from 1272 to 1348 nm with pump power 0.97 W. This material could be useful to fabricate ultrabroadband optical fiber amplifiers.
Resumo:
Dy3+ doped oxyfluoride silicate glass was prepared and its optical absorption, 1.3 mu m emission, and upconversion luminescence properties were studied. Furthermore, the Judd-Ofelt [Phys. Rev. 127, 750 (1962); J. Chem. Phys. 37, 511 (1962)] intensity parameters, oscillator strengths, spontaneous transition probability, fluorescence branching ratio and radiative lifetime were calculated by Judd-Ofelt theory, while stimulated emission cross section of H-6(9/2)+F-6(11/2)-> H-6(15/2) transition was calculated by McCumber theory [Phys. Rev. A. 134, 299 (1964)]. According to the obtained Judd-Ofelt intensity parameters Omega(2)=2.69x10(-20) cm(2), Omega(4)=1.64x10(-20) cm(2), and Omega(6)=1.64x10(-20) cm(2), the radiative lifetime was calculated to be 810 mu s for 1.3 mu m emission, whose full width at half maximum and sigma(e) were 115 nm and 2.21x10(-20)cm(2), respectively. In addition, near infrared to visible upconversion luminescence was observed and evaluated. The results suggest that Dy3+ doped oxyfluoride silicate glass can be used as potential host material for developing broadband optical amplifiers and laser applications.
Resumo:
We report on the fabrication and characterization of low-loss planar and stripe waveguides in a Nd3+-doped glass by 6 MeV oxygen-ion implantation at a dose of 1x10(15) ions/cm(2). The dark mode spectroscopy of the planar waveguide was measured using a prism coupling arrangement. The refractive index profile of the planar waveguide was reconstructed from a code based on the reflectivity calculation method. The results indicate that a refractive index enhanced region as well as an optical barrier have been created after the ion beam processing. The near-field mode profiles of the stripe waveguide were obtained by an end-fire coupling arrangement, by which three quasitransverse electric modes were observed. After annealing, the propagation losses of the planar and stripe waveguides were reduced to be similar to 0.5 and similar to 1.8 dB/cm, respectively. (c) 2007 American Institute of Physics.
Resumo:
Transparent Ni2+-doped MgO-Al2O3-TiO2-SiO2 glass ceramics were prepared, and the optical properties of Ni2+-doped glass ceramics were investigated. Broadband emission centered at 1320 nm was observed by 980 nm excitation. The longer wavelength luminescence compared with Ni2+-doped Li2O-Ga2O3-SiO2 glass ceramics is ascribed to the low crystal field hold by Ni2+ in MgO-Al2O3-TiO2-SiO2 glass ceramics. The change in optical signals at the telecommunication bands with or without 980 nm excitation was also measured when the seed beam passes through the bulk gain host.(C) 2007 American Institute of Physics.
Resumo:
Fluorophosphate glass with 4 mol.% ErF3 content was prepared. The different scanning calorimetry was conducted. Raman spectrum, infrared transmission spectrum, absorption spectrum were measured. Fluorescence spectrum and lifetime of emission around 1.53 mu m were measured under 970 nm laser diode excitation. The metaphosphate content in the composition is limited, but the maximum phonon energy of glass amounts to 1290 cm- 1, and is comparatively high. The full width at half maximum is about 56 nm, and is wider than for most of the materials investigated. The measured lifetime of I-4(13/2) -> I-4(15/2) transition, contributed by the high phonon energy, inefficient interaction of Er3+ ions, and low water content, amounts to no less than 7.36 ms though the Er3+ concentration is high. This work might provide useful information for the development of compact optical devices.
Resumo:
Er3+ doped multicomponent fluoride based glass was prepared. These precursor fluoride glass samples were then heated using different schedules. Crystalline phase particles were successfully precipitated in the multicomponent fluoride glass samples after heat treatment. The influence of heat treatment on the spectroscopic properties of Er3+ in multicomponent fluoride based glass samples were discussed. Small changes of the Judd-Ofelt parameters Omega(i) (i = 2,4,6) were found in multicomponent fluoride glass samples before and after heat treatment compared to oxyfluoride telluride glass. Preparation conditions used to produce transparent multicomponent fluoride glass ceramics doped with rare-earth ions are discussed. (c) 2007 Elsevier B.V. All rights reserved.