211 resultados para GIANT AIR-SHOWER
Resumo:
IEECAS SKLLQG
Elemental carbon in urban soils and road dusts in Xi'an, China and its implication for air pollution
Characteristics of Traffic-related Emissions: A Case Study in Roadside Ambient Air over Xi'an, China
Resumo:
The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energy-weighted sum rule m(-1) and the centroid energy of the ISGMR in Sn-120 and Pb-208 are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.
Resumo:
We study the relationship between the properties of the isovector giant dipole resonance of finite nuclei and the symmetry energy in the framework of the relativistic mean field theory with six different parameter sets of nonlinear effective Lagrangian. A strong linear correlation of excited energies of the dipole resonance in finite nuclei and symmetry energy at and below the saturation density is found. This linear correlation leads to the symmetry energy at the saturation density at the interval 33.0MeV <= S(po) <= 37.0 MeV. The comparison to the present experimental data in the soft dipole mode of (132) Sn constrains approximately the symmetry energy at p = 0.1 fm(-3) at the interval 21.2MeV similar to 22.5 MeV. It is proposed that a precise measurement of the soft dipole mode in neutron rich nuclei could set up an important constraint on the equation of state for asymmetric nuclear matter.
Resumo:
Ag-CuCl catalysts were found to be active and selective for the epoxidation of propylene using air as the oxidant. Ag catalyst gives a propylene conversion of 31.6%, with a propylene oxide (PO) selectivity of 0.42% at a reaction temperature of 350 degreesC after 220 min of reaction. Addition of CuCl significantly improves the selectivity to PO, and suppresses the conversion of propylene. The Ag-CuCl (1/0.6) catalyst gives propylene conversion of about 3% and a PO selectivity of about 30% at a reaction temperature of 350 degreesC after 500 min of reaction. The activity of the Ag-CuCl catalyst increases with the reaction time and the selectivity to PO is very stable for this catalyst. It is found that AgCl and CuO phases formed during the catalyst preparation are beneficial to the epoxidation of propylene.
Resumo:
Adoption of a sintered stainless steel fiber felt was evaluated as gas diffusion backing in air-breathing direct methanol fuel cell (DMFC). By using a sintered stainless steel fiber felt as an anodic gas diffusion backing, the peak power density of an air-breathing DMFC is 24 mW cm(-2), which is better than that of common carbon paper. A 30-h-life test indicates that the degraded performance of the air-breathing DMFC is primarily due to the water flooding of the cathode. Twelve unit cells with each has 6 cm(2) of active area are connected in series to supply the power to a mobile phone assisted by a constant voltage diode. The maximum power density of 26 mW cm(-2) was achieved in the stack, which is higher than that in single cell. The results show that the sintered stainless steel felt is a promising solution to gas diffusion backing in the air-breathing DMFC, especially in the anodic side because of its high electronical conductivity and hydrophilicity. (C) 2004 Elsevier B.V. All rights reserved.