154 resultados para Finite Chian Rings
Resumo:
IEECAS SKLLQG
Resumo:
The magnet design, fabrication, and measurement of HIRFL-CSR (Heavy Ion Research Facility in Lanzhou Cooling Storage Ring) are presented. All magnets will be laminated And welded with an armor-coated surface between two big endplates made of sticking glue 0.5 mm-thick sheets. The dipole of CSRm was chosen an H type with an air circle on the pole to improve the field uniformity. The dipole of CSRe was chosen the C type with an air circle and two air slots on the pole to improve the field homogeneity. Its reproducibility of magnet to magnet was adjusted with inserting small laminating pieces before demountable pole ends to reach less than +/- 2 x 10(-4) at optimized field level. CSRm quadrupoles diameter is 170 mm and has two different lengths, and its endplates were made with punching pieces after coating with epoxy glue, there is chamfered directly on the pole ends to reduce 12th-order contribution of field and without the demountable pole ends. CSRe main quadrupoles diameter is 240 mm and has two different lengths, and its endplates were also made with punching pieces coated with epoxy glue, there is also chamfered directly on the pole ends to reduce 12th-order contribution of field like CSRm.
Resumo:
We study the relationship between the properties of the isovector giant dipole resonance of finite nuclei and the symmetry energy in the framework of the relativistic mean field theory with six different parameter sets of nonlinear effective Lagrangian. A strong linear correlation of excited energies of the dipole resonance in finite nuclei and symmetry energy at and below the saturation density is found. This linear correlation leads to the symmetry energy at the saturation density at the interval 33.0MeV <= S(po) <= 37.0 MeV. The comparison to the present experimental data in the soft dipole mode of (132) Sn constrains approximately the symmetry energy at p = 0.1 fm(-3) at the interval 21.2MeV similar to 22.5 MeV. It is proposed that a precise measurement of the soft dipole mode in neutron rich nuclei could set up an important constraint on the equation of state for asymmetric nuclear matter.
Resumo:
We perform a systematic calculation of the equation of state of asymmetric nuclear matter at finite temperature within the framework of the Brueckner-Hartree-Fock approach with a microscopic three-body force. When applying it to the study of hotka on condensed matter, we find that the thermal effect is more profound in comparison with normal matter, in particular around the threshold density. Also, the increase of temperature makes the equation of state slightly stiffer through suppression of kaon condensation.
Resumo:
The CR superconducting magnet is a dipole of the FAIR project of GSI in Germany. The quench of the strand is simulated using FEM software ANSYS. From the simulation, the quench propagation can be visualized. Programming with APDL, the value of propagation velocity of normal zone is calculated. Also the voltage increasing over time of the strand is computed and pictured. Furthermore, the Minimum Propagation Zone (MPZ) is studied. At last, the relation between the current and the propagation velocity of normal zone, and the influence of initial temperature on quench propagation are studied.
Resumo:
We investigate hard photon production of the near-collinear bremsstrahlung and a new process called the inelastic pair annihilation, fully including the LPM effect, in a chemically equilibrating quark-gluon plasma at finite baryon density, and find that the effect of the system evolution on the photon production and large contribution of the bremsstrahlung make the total photon yield of the two processes as a strongly increasing function of the initial quark chemical potential.
Resumo:
We study hard photon production from a chemically non-equilibrated quark-gluon plasma with finite baryon density on the basis of Juttner distribution of partons of the system. We find that the photon production is ruled by early times, main contributions are given by rapidities y <= 6, and photon yield is a strongly increasing function of the initial quark chemical potential. In addition, we note that contribution from bremsstrahlung and Compton process qg -> q gamma dominates.
Resumo:
Using a phenomenological asymmetric nuclear equation of state, we obtained pressure-density isotherms of the finite nucleus Sn-112 simulated in r-space and in p-space and constructed the nuclear fragments by using the coalescence model. After correlatively analysing the fragments, the signal of critical behavior has been found and critical exponents were also extracted.