148 resultados para Elastic-Constants
Resumo:
The excited states in 22Mg have been investigated by the resonant elastic scattering of 21Na + p.A 4.0 MeV/nucleon 21Na beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θc.m. ≈ 172◦, 146◦, and 134◦, respectively. A wide energy-range of excitation function in 22Mg (up to Ex ∼ 8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the 18Ne(α,p)21Na reactionwas recalculated based on the present parameters.Generally speaking,the present rates are much smaller than the previous ones.
Resumo:
Differential cross sections for the quasi-elastic scattering of C-16 at 47.5 MeV/nucleon from C-12 target are measured. Coupled-channels calculations are carried out and the optical potential parameters are obtained by fitting the experimental angular distribution.
Resumo:
A new measurement of proton resonance scattering on Be-7 was performed tip to the center-of-mass energy of 6.7 MeV using the low-energy RI beam facility CRIB (CNS Radioactive Ion Beam separator) at the Center for Nuclear Study of the University of Tokyo. The excitation function of Be-7 + p elastic scattering above 3.5 MeV was measured Successfully for the first time, providing important information about the resonance structure of the B-8 nucleus. The resonances are related to the reaction rate of Be-7(p.gamma)B-8. which is the key reaction in solar B-8 neutrino production. Evidence for the presence of two negative parity states is presented. One of them is a 2(-) state observed as a broad s-wave resonance, the existence of which had been questionable. Its possible effects on the determination of the astrophysical S-factor of Be-7(p.gamma)B-8 at solar energy are discussed. The other state had not been observed in previous measurements, and its spin and parity were determined as 1(-). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The excited states in 22Mg have been investigated by the resonant elastic scattering of 21Na + p. A 4.0 MeV/nucleon 21Na beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θc.m. ≈ 172◦ , 146◦, and 134◦, respectively. A wide energy-range of excitation function in 22Mg (up to Ex ∼ 8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the 18Ne(α,p)21Na reactionwas recalculated based on the present parameters. Generally speaking, the present rates are much smaller than the previous ones.
Resumo:
The differential cross sections for elastic scattering products of F-17 on Pb-208 have been measured. The angular dispersion plots of ln(d sigma/d theta) versus theta(2) are obtained from the angular distribution of the elastic scattering differential cross sections. Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle. This turning angle can be clarified as nuclear rainbow in classical deflection function. The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena.
Resumo:
The differential cross-sections for elastic scattering of F-17 and O-17 on Pb-208 have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles, viz. angulax dispersion plot, shows clearly that there exists a turning point in the range of small scattering angles (6 degrees-20 degrees) for F-17 due to its exotic structure, while no turning point was observed for O-17. The experimental results have been compared with previous data of other groups. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering angular dispersion of weakly bound nuclei with halo or skin structure as compared with that of the stable nuclei. Therefore the fact that the turning point of the elastic scattering angular dispersion plot appears at small angle for weakly bound nuclei can be used as a new probe to investigate the halo and skin phenomenon.
Resumo:
The differential cross-sections for elastic scattering of F-17 and O-17 on Pb-208 have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles shows clearly that there exists a turning point in the range of small scattering angles (6 degrees-20 degrees) for F-17 having exotic structure, while no turning point was observed in the O-17 elastic scattering. The experimental results have been compared with previous data. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering differential cross-sections of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the fact that the turning point of the logarithms of differential cross-sections appears at small angle for weakly bound nuclei could be used as a new probe to investigate the halo and skin phenomenon.
Resumo:
Based on the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model and the scaling model according to nucleon effective mass, effects of elastic and inelastic NN scattering cross sections on pi(-)/pi(+) in the neutron-rich reaction of Ca-48 + Ca-48 at a beam energy of 400 MeV/nucleon are studied. It is found that cross-section effects of both NN elastic and inelastic scatterings affect Delta(1232), pi(-) and pi(+) production, as well as the value of pi(-)/pi(+).
Resumo:
Differential cross sections for the elastic scattering of halo nucleus He-6 on proton target were measured at 82.3 MeV/u. The experimental results are well reproduced by optical model calculations using global potential KD02 with a reduction of the depth of real volume part by a factor of 0.7. A systematic analysis shows that this behavior might be related to the weakly bound property of unstable nuclei.
Synthesis of Pd/C catalysts with designed lattice constants for the electro-oxidation of formic acid
Resumo:
Pd/C catalysts with designed lattice constants were synthesized for the electro-oxidation of formic acid. By changing the solvents in the preparation procedure, it was demonstrated that the different lattice constants of Pd crystallites could be controlled as desired. The varied lattice constants may be attributed to the difference in the interactions between solvents and PdCl2. it was found that the lattice constant had an obvious effect on the electro-catalytic performance of Pd.
Resumo:
First principles calculations were performed to investigate the structural, elastic, and electronic properties of IrN2 for various space groups: cubic Fm-3m and Pa-3, hexagonal P3(2)21, tetragonal P4(2)/mnm, orthorhombic Pmmn, Pnnm, and Pnn2, and monoclinic P2(1)/c. Our calculation indicates that the P2(1)/c phase with arsenopyrite-type structure is energetically more stable than the other phases. It is semiconducting (the remaining phases are metallic) and contains diatomic N-N with the bond distance of 1.414 A. These characters are consistent with the experimental facts that IrN2 is in lower symmetry and nonmetallic. Our conclusion is also in agreement with the recent theoretical studies that the most stable phase of IrN2 is monoclinic P2(1)/c. The calculated bulk modulus of 373 GPa is also the highest among the considered space groups. It matches the recent theoretical values of 357 GPa within 4.3% and of 402 GPa within 7.8%, but smaller than the experimental value of 428 GPa by 14.7%. Chemical bonding and potential displacive phase transitions are discussed for IrN2. For IrN3, cubic skutterudite structure (Im-3) was assumed.
Resumo:
The structure, elastic, and electronic properties of OsN2 at various space groups: cubic Fm-3m, Pa-3, and orthorhombic Pnnm were studied by first-principles calculations based on density functional theory. Our calculation indicates that the structure in orthorhombic Pnnm phase is energetically more stable compared with cubic systems. It is metallic, mechanically stable and contains diatomic N-N units with the bond distance 1.418 A. These characters are consistent with experimental facts that OsN2 is orthorhombic and metallic. The calculated bulk modulus 394 GPa is also the highest among the considered space groups, slightly larger than previous value 358 GPa. The calculated elastic anisotropic factors and directional bulk modulus showed that OsN2 possess high elastic anisotropy.
Resumo:
First principles calculations are performed to investigate the elastic and electronic properties of MFe3N (M=Co,Rh,Ir) at Pm-3m space group. The authors' calculation indicates that the three MFe3N phases are metallic and mechanically stable. For RhFe3N, the calculated lattice parameter of 3.826 A is in excellent agreement with the experimental value of 3.8292 A. The three phases are ferromagnetic with the calculated magnetic moments per f.u. being 8.92 mu(B) for CoFe3N, 9.04 mu(B) for RhFe3N, and 8.50 mu(B) for IrFe3N. The unusually large B/G ratio from 2.47 for CoFe3N and 2.45 for RhFe3N to 1.81 for IrFe3N indicates that they are ductile.
Resumo:
The elastic, magnetic and electronic properties of MFe3N (M = Fe, Ru, Os) are investigated via first-principles calculations. The calculated results are in agreement with the experimental and other theoretical data. The high ratios of bulk modulus to shear modulus 2.7, 2.0, and 1.8 for gamma'-Fe4N, RuFe3N, and OsFe3N, respectively, indicate that they have good ductility. gamma'-Fe4N possesses the largest B/C-44 (3.41) ratio, which suggests that it is much prone to shearing. The net magnetic moment per formula unit decreases from 9.90 for gamma'-Fe4N, 7.66 for RuFe3N, to 6.80 mu(B) for OsFe3N.