199 resultados para Distribution of information
Resumo:
The relationship between the penetration depth and the level and distribution of chromosomal aberration of the root tip cells were investigated by exposure of the superposed tomato seeds to 80 MeV/u carbon ions. The results showed that on the entrance of the beam the chromosomal aberration level was low. Damage such as breaks and gaps were dominant. At the Bragg peak, the chromosomal aberration level was high. The yields of dicentrics, rings and disintegrated small chromosomes increased but the yields of breaks and gaps decreased. These results are consistent with the distribution of the physical depth dose pro. le of carbon ions. It is effective to deposit the Bragg peak on the seeds to induce hereditary aberration in the mutation breeding with heavy ions.
Resumo:
We investigate the difference in the angular distribution of Ly-alpha(1) and K alpha(1) photons from hydrogenlike and heliumlike ions of uranium after radiative electron capture to the L shell. The strong anisotropy in the former case is changed to a very small one in the latter case. Our calculations support the observation. The effect takes place even in the limiting case of noninteracting electrons, being caused by the Pauli principle.
Resumo:
A high current RFQ (radio frequency quadrupole) is being studied at the Institute of Modern Physics, CAS for the direct plasma injection scheme. Shunt impedance is air important parameter when designing a 4-rod RFQ cavity, it reflects the RF efficiency of the cavity, and has a direct influence on the cost of the structure. Voltage distribution of a RFQ cavity has an effect on beam transmission, and particles would be lost if the actual voltage distribution is not as what, it should be. The influence of cell length, stern thickness and height on Shunt impedance and voltage distribution have been studied, in particular the effect of projecting electrodes has been investigated in detail.
Resumo:
Considering the fact, in the real world, that information is transmitted with a time delay, we study an evolutionary spatial prisoner's dilemma game where agents update strategies according to certain information that they have learned. In our study, the game dynamics are classified by the modes of information learning as well as game interaction, and four different combinations, i.e. the mean-field case, case I, case II and local case, are studied comparatively. It is found that the time delay in case II smoothes the phase transition from the absorbing states of C (or D) to their mixing state, and promotes cooperation for most parameter values. Our work provides insights into the temporal behavior of information and the memory of the system, and may be helpful in understanding the cooperative behavior induced by the time delay in social and biological systems.