164 resultados para Deep integration
Resumo:
本文介绍的长时间电流积分数字仪,是用电流-频率(I-F)转换电路将微弱电流转换成脉冲信号,结合后级脉冲计数器及处理控制电路,实现对10pA-10μA量级输入电流的长时间测量。该仪器可用于电离室、法拉第筒等输出电流或电荷的测量,测量时间范围1s-192h。该电路的设计实现,为长时间测量电流或电荷,并进行束流监测提供了一种可行、通用、高性价比的好方法。
Resumo:
A central challenge to the semiclassical description of quantum mechanics is the quantum phenomenon of "deep" tunneling. Here we show that real time classical trajectories suffice to account correctly even for deep quantum tunneling, using a recently formulated semiclassical initial value representation series of the quantum propagator and a prefactor free semiclassical propagator. Deep quantum tunneling is effected through what we term as coherent classical paths which are composed of one or more classical trajectories that lead from reactant to product but are discontinuous along the way. The end and initial phase space points of consecutive classical trajectories contributing to the coherent path are close to each other in the sense that the distance between them is weighted by a coherent state overlap matrix element. Results are presented for thermal and energy dependent tunneling through a symmetric Eckart barrier.
Resumo:
We have successfully achieved the integration of isothermal amplification and the subsequent analysis of specific gene fragments on poly(methyl methacrylate) microchips. In our experiments, loop-mediated isothermal amplification, which can offer higher specificity and efficiency than PCR, has been performed at a constant temperature (65 degreesC). After amplification, products could be either examined by the integrated microchip-based electrophoresis or directly observed by naked eye with SYBR Green I added into the reaction solution. By such an integrated microsystem, the amplification and the subsequent analysis of prostate-specific antigen gene with template concentration at 23 fg/muL could be finished within 15 min, which demonstrates its advantages of high specificity, good reproducibility, and fast speed in gene detection.
Resumo:
This paper discusses the definition and use of the term ‘integrated management’ in the context of coastal and ocean resources. It identifies several components which appear to be needed to establish an integrated management system for a large area subject to multiple use and jurisdiction. It suggests that the basis of integrated management should be a clear articulation of common purpose which addresses long term needs and vision. Once developed, this common purpose should be securely established to provide the setting against which sectoral and agencies managers and the community conduct and co-ordinate their activities.
Resumo:
The broad acceptance and collective commitment of countries to the tasks involved in the implementation of Agenda 21, Chapter 17, have profound implications vis-à-vis the interplay between coastal zone management (CZM) and national development planning (NDP). It appears that in many countries, CZM has evolved in isolation from the mainstream of national development processes. The paper examines various forms and elements for the effective integration of CZM into NDP.
Resumo:
The purpose of this paper is to examine the extent to which the existing US Coastal Zone Management (CZM) program represents Integrated Coastal Management (ICM). The actions taken at Rio de Janeiro in June 1992 as part of the United Nations Conference on Environment and Development (UNCED) could eventually impact the policies of the US in such a way as to encourage better integration of US coastal and ocean management efforts.
Resumo:
We developed a series of highly efficient blue electroluminescent polymers with dopant-host systems and molecular dispersion features by selecting 1,8-naphthalimide derivatives as the light blue emissive dopant units, choosing polyfluorene as the deep blue emissive polymer host and covalently attaching the dopant units to the side chain of the polymer host. The polymers' EL spectra exhibited both deep blue emission from the polymer host and light blue emission from the dopant units because of the energy transfer and charge trapping from the polymer host to the dopant units.
Resumo:
The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3 m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 mu m), (ii) the bulky axial cylinder (radius: <75 mu m), and (iii) the central axial canal (diameter: <2 mu m) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 mu m large holes; the net can be silicified. The silica layers forming the lamellar zone are approximate to 5 mu m thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The community structure and vertical distribution of prokaryotes in a deep-sea (ca. 3,191 m) cold sediment sample (ca. 43 cm long) collected at the East Pacific Rise (EPR) similar to 13 degrees N were studied with 16SrDNA-based molecular analyses. Total community DNA was extracted from each of four discrete layers EPRDS-1, -2, -3 and -4 (from top to bottom) and 16S rDNA were amplified by PCR. Cluster analysis of DGGE profiles revealed that the bacterial communities shifted sharply between EPRDS-1 and EPRDS-2 in similarity coefficient at merely 49%. Twenty-three sequences retrieved from DGGE bands fell into 11 groups based on BLAST and bootstrap analysis. The dominant groups in the bacterial communities were Chloroflexi, Gamma proteobacteria, Actinobacterium and unidentified bacteria, with their corresponding percentages varying along discrete layers. Pairwise Fst (F-statistics) values between the archaeal clone libraries indicated that the archaeal communities changed distinctly between EPRDS-2 and EPRDS-3. Sequences from the archaeal libraries were divided to eight groups. Crenarchaea Marine Group I (MGI) was prevalent in EPRDS-1 at 83%, while Uncultured Crenarchaea group II B (UCII B) abounded in EPRDS-4 at 61%. Our results revealed that the vertically stratified distribution of prokaryotic communities might be in response to the geochemical settings and suggested that the sampling area was influenced by hydrothermalism. The copresence of members related to hydrothermalism and cold deep-sea environments in the microbial community indicated that the area might be a transitional region from hydrothermal vents to cold deep-sea sediments.
Resumo:
Six deep-sea proteolytic bacteria taken from Aleutian margin sediments were screened; one of them produced a cold-adapted neutral halophilic protease. These bacteria belong to Pseudoalteromonas spp., which were identified by the 16S rDNA sequence. Of the six proteases produced, two were neutral cold-adapted proteases that showed their optimal activity at pH 7-8 and at temperature close to 35 degrees C, and the other four were alkaline proteases that showed their optimal activity at pH 9 and at temperature of 40-45 degrees C. The neutral cold-adapted protease E1 showed its optimal activity at a sodium chloride concentration of 2 M, whereas the activity of the other five proteases decreased at elevated sodium chloride concentrations. Protease E1 was purified to electrophoretic homogeneity and its molecular mass was 34 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of protease E1 was determined to be 32,411 Da by mass spectrometric analysis. Phenylmethyl sulfonylfluoride (PMSF) did not inhibit the activity of this protease, whereas it was partially inhibited by ethylenediaminetetra-acetic acid sodium salt (EDTA-Na). De novo amino acid sequencing proved protease E1 to be a novel protein.
Resumo:
An efficient conjugation method has been developed for the marine Actinomyces sp. isolate M048 to facilitate the genetic manipulation of the chandrananimycin biosynthesis gene cluster. A phi C31-derived integration vector pIJ8600 containing oriT and attP fragments was introduced into strain M048 by bi-parental conjugation from Escherichia coli ET12567 to strain M048. Transformation efficiency was (6.38 +/- 0.41) x 10(-5) exconjugants per recipient spore. Analysis of eight exconjugants showed that the plasmid pIJ8600 was stably integrated at a single chromosomal site (attB) of the Actinomyces genome. The DNA sequence of the attB was cloned and shown to be conserved. The results of antimicrobial activity analysis indicated that the insertion of plasmid pIJ8600 seemed to affect the biosynthesis of antibiotics that could strongly inhibit the growth of E. coli and Mucor miehei (Tu284). HPLC-MS analysis of the extracts indicated that disruption of the attB site resulted in the complete abolition of chandrananimycin A-C production, proving the identity of the gene cluster. Instead of chandrananimycins, two bafilomycins were produced through disruption of the attB site from the chromosomal DNA of marine Actinomyces sp. M048.