127 resultados para Deciduous forest
Resumo:
A pollen record of core PC-1 from the northern Okinawa Trough, East China Sea (ECS), provides information on vegetation and climate changes since 24 cal. kaBP. A total of 103 samples were palynologically analyzed at 8 cm intervals with a time resolution of 230 a. Four pollen zones are recognized: zone I (812-715 cm, 24.2-21.1 cal. kaBP), zone II (715-451 cm, 21.1-15.2 cal. kaBP), zone III (451-251 cm, 15.2-10.8 cal. kaBP), zone IV (251-0 cm, 10.8-0.3 cal. kaBP), corresponding to Late MIS 3, Last Glacial Maximum (LGM), deglaciation and Holocene, respectively. The LGM is characterized by the dominance of herbs, mainly Artemisia, and high pollen influx, implying an open vegetation on the exposed continental shelf and a cool and dry climate. The deglaciation is a climate warming stage with Pinus percentage increased and Artemisia percentage decreased and a rapid sea-level rise. The Holocene is characterized by predominance of tree pollen with rapid increase in Castanea-Castanopsis indicating the development of mixed evergreen and deciduous broad-leaved forest and a warm, humid climate. Low pollen influx during the Holocene probably implies submergence of the continental shelf and retreat of the pollen source area. The vegetation indicated by pollen assemblage found in this upper zone is consistent with the present vegetation found in Kyushu, Japan. Originating from the humid mountain area of North Luzon of the Philippines, Tasmania and New Zealand, Phyllocladus with sporadic occurrence throughout PC-1 core probably suggests the influence of Palaeo-Kuroshio Current or intense summer monsoon. The observed changes in Pinus and Herbs percentage indicate fluctuations of the sea level, and high Pinus percentage corresponds to high sea level. Spectrum analysis of the pollen percentage record reveals many millennial-scale periodicities, such as periodicities of 6.8, 3.85 2.2, 1.6 ka.
Resumo:
Eight sporopollen zones have been divided based on the results of high-resolution sporopollen analysis of Core B10 in the southern Yellow Sea. Based on the results along with C-14 datings and the subbottom profiling data, climatic and environmental changes since the last stage of late Pleistocene are discussed. The main conclusions are drawn as follows: (1) the vegetation evolved in the process of coniferous forest-grassland containing broad-leaved treesconiferous and broad-leaved mixed forest --> coniferous and broad-leaved mixed forest-grassland prevailed by coniferous trees --> coniferous and broad-leaved mixed forest-grassland containing evergreen broad-leaved trees- coniferous and broad-leaved mixed forest-grassland prevailed by broad-leaved trees-deciduous broad-leaved forest-meadow containing evergreen broad-leaved trees- coniferous and broadleaved mixed forest-grassland prevailed by broad-leaved trees- coniferous and broad-leaved mixed forest containing evergreen broad-leaved trees; (2) eight stages of climate changes are identified as the cold and dry stage, the temperate and wet stage, the cold and dry stage, the warm and dry stage, the temperate and wet stage, the hot and dry stage, the temperate and dry stage, then the warm and dry stage in turn; (3) the sedimentary environment developed from land, to littoral zone, to land again, then to shore-neritic zone; and (4) the Yellow Sea Warm Current formed during early-Holocene rather than Atlantic stage.
Resumo:
Geo-ecological transect studies in the pastures of the upper catchment of the HuangHe (99 degrees 30'-100 degrees 00'E/35 degrees 30'-35 degrees 40'N'; 3,000-4,000 in a.s.l., Qinghai province, China) revealed evidence that pastures replace forests. Plot-based vegetation records and fenced grazing exclosure experiments enabled the identification of grazing indicator plants for the first time. The mapping of vegetation patterns of pastures with isolated juniper and Spruce forests raise questions as to the origin of the grasslands, which arc widely classified as "natural" at present. Soil investigations and charcoal fragments of Juniperus (8,153 +/- 63 uncal BP) and Picea (6,665 +/- 59 uncal BP) provide evidence of the wider presence of forests. As temperatures and rainfall records undoubtedly represent a forest climate, it is assumed that the present pastures have replaced forests. Circumstantial evidence arising from investigations into the environmental history of the Holocene effectively substantiates this theory.
Resumo:
How coniferous trees in northern China changed their distribution ranges in response to Quaternary climatic oscillations remains largely unknown. Here we report a study of the phylogeography of Pinus tabulaeformis, an endemic and dominant species of coniferous forest in northern China. We examined sequence variation of maternally inherited, seed-dispersed mitochondrial DNA (mtDNA) (nad5 intron 1 and nad4/3-4) and paternally inherited, pollen- and seed-dispersed chloroplast DNA (cpDNA) (rpl16 and trnS-trnG) within and among 30 natural populations across the entire range of the species. Six mitotypes and five chlorotypes were recovered among 291 trees surveyed. Population divergence was high for mtDNA variation (G(ST) = 0.738, N-ST = 0.771) indicating low levels of seed-based gene flow and significant phylogeographical structure (N-ST > G(ST), P < 0.05). The spatial distribution of mitotypes suggests that five distinct population groups exist in the species: one in the west comprising seven populations, a second with a north-central distribution comprising 15 populations, a third with a southern and easterly distribution comprising five populations, a fourth comprising one central and one western population, and a fifth comprising a single population located in the north-central part of the species' range. Each group apart from the fourth group is characterized by a distinct mitotype, with other mitotypes, if present, occurring at low frequency. It is suggested, therefore, that most members of each group apart from Group 4 are derived from ancestors that occupied different isolated refugia in a previous period of range fragmentation of the species, possibly at the time of the Last Glacial Maximum. Possible locations for these refugia are suggested. A comparison of mitotype diversity between northern and southern subgroups within the north-central group of populations (Group 2) showed much greater uniformity in the northern part of the range both within and between populations. This could indicate a northward migration of the species from a southern refugium in this region during the postglacial period, although alternative explanations cannot be ruled out. Two chlorotypes were distributed across the geographical range of the species, resulting in lower levels of among-population chlorotype variation. The geographical pattern of variation for all five chlorotypes provided some indication of the species surviving past glaciations in more than one refugium, although differentiation was much less marked, presumably due to the greater dispersal of cpDNA via pollen.
Resumo:
An inventory of isolated tree stands surrounded by desert pastures in Southern Tibet (A.R. Xizang, China) revealed more than 50 sites with vigorous trees of Juniperus convallium Rehder & E.H. Wilson and Juniperus tibetica Kom and additional more than 10 records where juniper trees had been destroyed between 1959-1976. The tree stands are not restricted to any specific habitat, and occur within an area stretching 650 km westwards from the current forest border of Southern Tibet. The trees are religious landmarks of the Tibetan Buddhists. The highest trees were found at an elevation of 4,860 m. Vegetation records, rainfall correlations and temperature data collected by local climate stations and successful reforestation trials since 1999 indicate that forest relicts fragmented through human interference could regenerate if current cattle grazing and deforestation practices are halted. The drought line of Juniperus forests in Southern Tibet is approximately 200-250 mm/a. A first pollen diagram from Lhasa shows forest decline associated with the presence of humans since at least 4,600 yr BP. The currently degraded commons developed in the last 600 yr. To date, no findings of remains of ancient forests in the Central Tibetan Highlands of the Changtang have been reported.
Resumo:
Surface pollen assemblages and their relationhips with the modern vegetation and climate provide a foundation for investigating palaeo-environment conditions by fossil pollen analysis. A promising trend of palynology is to link pollen data more closely with ecology. In this study, I summarized the characteristics of surface pollen assemblages and their quantitative relation with the vegetation and climate of the typical ecological regions in northern China, based on surface pollen analysis of 205 sites and investigating of modern vegetation and climate. The primary conclusions are as follows:The differences in surface pollen assemblages for different vegetation regions are obvious. In the forest communities, the arboreal pollen percentages are more than 30%, herbs less than 50% and shrubs less than 10%; total pollen concentrations are more than 106 grains/g. In the steppe communities, arboreal pollen percentages are generally less than 5%; herb pollen percentages are more than 90%, and Artemisia and Chenopodiaceae are dominant in the pollen assemblages; total pollen concentrations range from 103 to 106 grains/g. In the desert communities, arboreal pollen percentages are less than 5%. Although Chenopodiaceae and Artemisia still dominate the pollen assemblages, Ephedra, Tamaricaceae and Nitraria are also significant important in the pollen assemblages; total pollen concentrations are mostly less than 104grains/g. In the sub-alpine or high and cold meadow communities, arboreal pollen percentages are less than 30%. and Cyperaceae is one of the most significant-taxa in the pollen assemblages. In the shrub communities, the pollen assemblages are consistent with the zonal vegetation; shrub pollen percentages are mostly less than 20%, except for Artemisia and Hippophae rhamnoides communities.There are obvious trends for the pollen percentage ratios of Artemisia to Chenopodiaceae (A/C), Pinus to Artemisia (P/A) and arbor to non-arbor (AP/NAP) in the different ecological regions. In the temperate deciduous broad-leaved forest region, the P/A ratios are generally higher than 0.1, the A/C ratios higher than 2 and the AP/NAP ratios higher than 0.3. In the temperate steppe regions, the P/A ratios are generally less than 0.1, the A/C ratios higher than 1 and the AP/NAP ratios less than 0.1. In the temperate desert regions, the P/A ratios are generally less than 0.1, the A/C ratios less than 1, and the AP/NAP ratios less than 0.1.The study on the representation and indication of pollen to vegetation shows that Pinus, Artemisia, Betula, Chenopodiaceae, Ephedra, Selaginella sinensis etc. are over-representative in the pollen assemblages and can only indicate the regional vegetation. Some pollen types, such as Quercus, Carpinus, Picea, Abies, Elaeagus, Larix, Salix, Pterocelis, Juglans, Ulmus, Gleditsia, Cotinus, Oleaceae, Spiraea, Corylus, Ostryopsis, Vites, Tetraena, Caragana, Tamaricaceae, Zygophyllum, Nitraria, Cyperaceae, Sanguisorba etc. are under-representative in the pollen assemblages, and can indicate the plant communities well. Populus, Rosaceae, Saxifranaceae, Gramineae, Leguminosae, Compositae, Caprifoliaceae etc. can not be used as significant indicators to the plants.The study on the relation of pollen percentages with plant covers shows that Pinus pollen percentages are more than 30% where pine trees exist in the surrounding region. The Picea+Abies pollen percentages are higher than 20% where the Picea+Abies trees are dominant in the communities, but less than 5% where the parent plants are sparse or absent. Larix pollen percentages vary from 5% to 20% where the Larix trees are dominant in the communities, but less than 5% where the parent plants are sparse or absent. Betula pollen percentages are higher than 40% where the Betula trees are dominant in the communities" but less than 5% where the parent plants are sparse or absent. Quercus pollen percentages are higher than 10% where the Quercus trees are dominant in the communities, but less than 1% where the parent plants sparse or absent. Carpinus pollen percentages vary from 5% to 15% where the Carpinus trees are dominant in the communities, but less than 1% where the parent plants are sparse or absent. Populus pollen percentages are about 0-5% at pure Populus communities, but cannot be recorded easily where the Populus plants mixed with other trees in the communities. Juglans pollen accounts for 25% to 35% in the forest of Juglans mandshurica, but less than 1% where the parent plants are sparse or absent. Pterocelis pollen percentages are less than 15% where the Pterocelis trees are dominant in the communities, but cannot be recorded easily where the parent plants are sparse or absent. Ulmus pollen percentages are more than 8% at Ulmus communities, but less than 1% where the Ulmus plants mixed with other trees in the communities. Vitex pollen percentages increase along with increasing of parent plant covers, but the maximum values are less than 10 %. Caragana pollen percentages are less than 20 % where the Caragana plant are dominant in the communities, and cannot be recorded easily where the parent plants are sparse or absent. Spiraea pollen percentages are less than 16 % where the Spiraea plant are dominant in the communities, and cannot be recorded easily where the parent plants are sparse or absent.The study on the relation of surface pollen assemblages with the modern climate shows that, in the axis 1 of DCA, surface samples scores have significant correlation with the average annual precipitations, and the highest determination coefficient (R2) is 0.8 for the fitting result of the third degree polynomial functions. In the axis 2 of DCA, the samples scores have significant correlation with the average annual temperatures, average July temperatures and average January temperatures, and the determination coefficient falls in 0.13-0.29 for the fitting result of the third degree polynomial functions with the highest determination coefficient for the average July temperature.The sensitivity of the different pollen taxa to climate change shows that some pollen taxa such as Pinus, Quercus, Carpinus, Juglans, Spiraea, Oleaceae, Gramineae, Tamariaceae and Ephedra are only sensitive to the change in precipitation.
Chemical and strontium isotope characterization of rainwater in karst virgin forest, Southwest China