156 resultados para Cylindrocladium sp
Resumo:
In our screening of marine Streptomycetes for bioactive principles, two novel antitumor antibiotics designated as chinikomycins A (2a) and B (2b) were isolated together with manumycin A (1), and their structures were elucidated by a detailed interpretation of their spectra. Chinikomycins A (2a) and B (2b) are chlorine-containing aromatized manumycin derivatives of the type 64-pABA-2 with an unusual para orientation of the side chains. They exhibited antitumor activity against different human cancer cell lines, but were inactive in antiviral, antimicrobial, and phytotoxicity tests.
Resumo:
The chemical investigation of the crude extract of the marine-derived Streptomyces sp. M491 yielded three new sesquiterpenes, namely, 10 alpha,11-dihydroxyamorph-4-ene (4), 10 alpha,15-dihydroxyamorph-4-en-3-one (6), and 5 alpha,10 alpha,11-trihydroxyamorphan-3-one (7). In addition, the known compounds 10 alpha-hydroxyamorph-4-en-3-one (2), o-hydroxyacetanilide, genistein, prunetin, and indole-3-carbaldehyde and the macrolide antibiotic chalcomycin A were identified. The structures were determined on the basis of spectroscopic analysis, especially 1D and 2D NMR data. This is the first report of these sesquiterpenes from bacteria.
Resumo:
V134, a marine isolate of the Vibrio genus, was found to produce a new beta-agarase of the GH16 family. The relevant agarase gene agaV was cloned from V134 and conditionally expressed in Escherichia coli. Enzyme activity analysis revealed that the optimum temperature and pH for the purified recombinant agarase were around 40 degrees C and 7.0. AgaV was demonstrated to be useful in two aspects: first, as an agarolytic enzyme, the purified recombinant AgaV could be employed in the recovery of DNA from agarose gels; second, as a secretion protein, AgaV was explored at the genetic level and used as a reporter in the construction of a secretion signal trap which proved to be a simple and efficient molecular tool for the selection of genes encoding secretion proteins from both gram-positive and gram-negative bacteria.
Resumo:
V134, a marine isolate of the Vibrio genus, was found to produce a new beta-agarase of the GH16 family. The relevant agarase gene agaV was cloned from V134 and conditionally expressed in Escherichia coli. Enzyme activity analysis revealed that the optimum temperature and pH for the purified recombinant agarase were around 40 degrees C and 7.0. AgaV was demonstrated to be useful in two aspects: first, as an agarolytic enzyme, the purified recombinant AgaV could be employed in the recovery of DNA from agarose gels; second, as a secretion protein, AgaV was explored at the genetic level and used as a reporter in the construction of a secretion signal trap which proved to be a simple and efficient molecular tool for the selection of genes encoding secretion proteins from both gram-positive and gram-negative bacteria.
Resumo:
In this work, the characterization of a chitosanase-producing bacterium isolated from soil was reported and this strain was grouped under the genus Aeromonas by virtue of its morphological, physiological properties and 16S rDNA gene sequences. It is the first report that the genus Aeromonas could produce chitosanase. Aeromonas sp. HG08 could secrete the chitosanase ( named AsChi) with molecular weight of 70 kDa. The optimum pH and temperature of AsChi was 6.0 and 55 degrees C, respectively. The activity of AsChi was markedly enhanced by Mn2+ and inhibited by Fe3+, Cu2+, Ag+ and Hg2+; additionally, the activity of AsChi was increased with the degree of deacetylation ( DDA) of chitosan. Through viscosimetric assay, AsChi probably hydrolyzed chitosan in an endo-type fashion.
Resumo:
Among marine bacteria isolated from the cytotoxic sponge Hymeniacidon perleve, one strain NJ6-3-1 classified as Pseudomonas sp. showed both cytotoxic and antimicrobial activities. Fatty acid analysis indicated that the bacterial strain consists mainly of C16:1, C16:0, C18:1, C18:0, C15:0, C14:0. One unusual 9,10-cyclopropane-C17:0 fatty acid and C26:0 also constitute major components, as well as the existence of squalene, the precursor of triterpenoids. The major metabolites in the culture broth were identified as alkaloids, including diketopiperazines and indole compounds, namely 3,6-diisopropylpiperazine-2,5-dione, 3-benzyl-3-isopropylpiperazine-2,5-dione, 3,6-bis-(2-methylpropyl)-piperazine-2,5-dione, indole-3-carboxaldehyde, indole-3-carboxylic acid methyl ester, indole-3-ethanol, and quinazoline-2,4-dione.
Resumo:
Thylakoid membranes were isolated from Gymnodinium sp. and spinach, whereas the phycobilisomes were isolated and purified from red alga Porphyridium cruentum. The absorption spectra of the purified phycobilisomes (PBS) showed three peaks at 548, 564, and 624 nm, respectively, and the ratio of the fluorescence intensity at the lambda(680)(em) to lambda(80)(em5) that at was about 7.3. All these results demonstrated that the purified PBS remained intact. The thylakoid membranes were incubated with the purified phycobilisomes, and the thylakoid membranes, which harbored the phycobilisomes, were purified by sucrose density gradient centrifugation. Meantime, the conjugates of phycobilisome-thylakoid membranes were constructed using glutaraldehyde and further purified. Their characteristics were studied by measuring the absorption spectra and fluorescence emission spectra. The results showed that the phycobilisomes from Porphyridium cruentum can attach to the thylakoid membranes from Gymnodinium sp. and spinach without covalent cross-linking, but the excited energy transfer did not occur. The conjugate of phycobilisome-thylakoid. membranes with covalent cross-linking exhibits the excited energy transfer between the phycobilisomes and the thylakoid membranes.
Resumo:
In our screening of marine actinomycetes for bioactive principles, three novel antibiotics designated as chandrananimycin A (3c), B (3d) and C (4) were isolated from the culture broth of a marine Actinomadura sp. isolate M045. The structures of the new antibiotics were determined by detailed interpretation of mass, 1 D and 2 D NMR spectra.
Resumo:
The effects of N (NaNO3) and C (NaAc) source in medium on the expression of tumor necrosis factor-alpha (TNF-alpha) gene in transgenic Anabaena sp. PCC 7120 were compared. The data showed that N source stabilized the expression of foreign protein and C source altered the synthesis of cell walls. Comparing several methods for breaking the cells, supersonic was able to extract TNF-alpha better than others. For purification of TNF-alpha, transgenic Anabaena cells were broken, the extracts were precipitated with ammonia sulfate, and the impure TNF-alpha was eluted from DEAE ion exchange chromatography. Electrophoresis (PAGE-SDS) showed a single band at 17 kD position.
Resumo:
The construction of the shuttle, expression vector of human tumor necrosis factor alpha (hTNF-alpha) gene and its expression in a cyanobacterium Anabaena sp. PCC 7120 was reported. The 700-bp hTNF cDNA fragments have been recovered from plasmid pRL-rhTNF, then inserted downstream of the promoter PpsbA in the plasmid pRL439. The resultant intermediary plasmid pRL-TC has further been combined with the shuttle vector pDC-8 to get the shuttle, expression vector pDC-TNF. The expression of the rhTNF gene in Escherichia coil has been analyzed by SDS-PAGE and thin-layer scanning, and the results show that the expressed TNF protein with these two vectors is 16.9 percent (pRL-TC) and 15.0 percent (pDC-TNF) of the total proteins in the cells, respectively, while the expression level of TNF gene in plasmid pRL-rhTNF is only 11.8 percent. Combined with the participation of the conjugal and helper plasmids, pDC-TNF has been introduced into Anabaena sg PCC 7120 by triparental conjugative transfer, and the stable transgenic strains have been obtained. The existence of the introduced plasmid pDC-TNF in recombinant cyanobacterial cells has been demonstrated by the results of the agarose electrophoresis with the extracted plasmid samples and Southern blotting with alpha-(32)p labeled hTNF cDNA probes, while the expression of the hTNF gene in Anabaena sp. PCC 7120 has been confirmed by the results of Western blotting with extracted protein samples and human TNF-alpha monoclonal antibodies. The cytotoxicity assays using the mouse cancer cell line L929 proved the cytotoxicity of the TNF in the crude extracts from the transgenic cyanobacterium Anabaena sp. PCC 7120.
Resumo:
Cladosporium sp. isolate N5 was isolated as a dominant fungus from the healthy conchocelis of Porphyra yezoensis. In the re-infection test, it did not cause any pathogenic symptoms in the alga. Twenty-one cultural conditions were chosen to test its antimicrobial activity in order to obtain the best condition for large-scale fermentation. Phenylacetic acid, p-hydroxyphenylethyl alcohol, and L-beta-phenyllactic acid were isolated from the crude extract as strong antimicrobial compounds and they are the first reported secondary metabolites for the genus Cladosporium. In addition, the Cladosporium sp. produced the reported Porphyra yezoensis growth regulators phenylacetic acid and p-hydroxyphenylacetic acid. No cytotoxicity was found in the brine shrimp lethality test, which indicated that the environmental-friendly Cladosporium sp. could be used as a potential biocontrol agent to protect the alga from pathogens.
Resumo:
Marine bacterium Vibrio sp. F-6, utilizing agarose as a carbon source to produce agarases, was isolated from seawater samples taken from Qingdao, China. Two agarases (AG-a and AG-b) were purified to a homogeneity from the cultural supernatant of Vibrio sp. F-6 through ammonium sulfate precipitation, Q-Sepharose FF chromatography, and Sephacryl S-100 gel filtration. Molecular weights of agarases were estimated to be 54.0 kDa (AG-a) and 34.5 kDa (AG-b) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH values for AG-a and AG-b were about 7.0 and 9.0, respectively. AG-a was stable in the pH range of 4.0-9.0 and AG-b was stable in the pH range of 4.0-10.0. The optimum temperatures of AG-a and AG-b were 40 and 55 degrees C, respectively. AG-a was stable at temperature below 50 degrees C. AG-b was stable at temperature below 60 degrees C. Zn2+, Mg2+ or Ca2+ increased AG-a activity, while Mn2+, Cu2+ or Ca2+ increased AG-b activity. However, Ag+, Hg2+, Fe3+, EDTA and SDS inhibited AG-a and AG-b activities. The main hydrolysates of agarose by AG-a were neoagarotetraose and neoagarohexaose. The main hydrolysates of agarose by AG-b were neoagarooctaose and neoagarohexaose. When the mixture of AG-a and AG-b were used, agarose was mainly degraded into neoagarobiose.
Resumo:
Marine Streptomyces are potential candidates for novel natural products and industrial catalysts. In order to set up biosynthesis approach for a holomycin-producing strain M095 isotated from Jiaozhou Bay, China, a genetic transformation system was established using intergeneric conjugation. The plasmid pIJ8600 consists of an origin of replication for Escherichia coli, a phage integrase directing efficient site-specific integration in bacterial chromosome, thiostrepton-induced promoter and an attP sequence. Using E. coli ET12567 (pUZ8002) carrying pIJ8600 as a conjugal donor, while it was mated with strain M095, pIJ8600 was mobilized to the recipient and the transferred DNA was also integrated into the recipient chromosome. The frequency of exconjugants was 1.9 +/- 0.13 x 10(-4) per recipient cell. Analysis of eight exconjugants showed pIJ8600 was stable integrated at a single chromosomal site (attB) of the Streptomyces genome. The DNA sequence of the attB was cloned and shown to be conserved. The results of growth and antimicrobial activity analysis indicated that the integration of pIJ8600 did not seem to affect the biosynthesis of antibiotics or other essential amino acids. To demonstrate the feasibility of above gene transfer system, the allophycocyanin gene (apc) from cyanobacterium Anacystis nidulans UTEX625 was expressed in strain M095, and the results indicated heterologous allophycocyanin could be expressed and folded effectively. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Synchocystis sp. PCC 6803 lacks a gene for the any known types of lycopene cyclase. Recently, we reported that sll0659 (unknown for its function) from Synechocystis sp. PCC6803 shows similarity in sequence to a lycopene cyclase gene-CruA from Chlorobium tepidum. To test, whether Sll0659 encoded protein serves as lycopene cyclase, in this study, we investigated the carotenoids of the wild types ans mutants, In the sll0659 deleted mutant, there is no blockage at the lycopene cyclization step. Our results demonstrate that sll0659 does not affect lycopene cyclization. However, the ultrastructure of mutants suggests the involvement or necessity of sll0659 in the cell division.
Resumo:
The chitosanase production was markedly enhanced by substrate induction, statistical optimization of medium composition and culture conditions by Microbacteritan sp. OU01 in shake-flask. A significant influence of (NH4)(2)SO4, MgSO4 center dot 7H(2)O and initial pH on chitosanase production was noted with Plackett-Burman design. It was then revealed with the method of steepest ascent and response surface methodology (RSM) that 19.0 g/L (NH4)(2)SO4, 1.3 g/L MgSO4 and an initial pH of 2.0 were optimum for the production of chitosanase; colloidal chitosan appeared to be the best inducer for chitosanase production by Microbacterium sp. OU01. This optimization strategy led to the enhancement of chitosanase from 3.6 U/mL to 118 U/mL. (c) 2006 Elsevier Ltd. All rights reserved.