164 resultados para Cuo : HZSM-5


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The secondary pores in the nanosized HZSM-5 zeolite have been observed for the first time via Xe-129 NMR spectroscopy using xenon as a probe; the location of non-framework Al can also be identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-throughput screening of HZSM-5 supported metal-oxides catalysts were carried out for the coupling reaction of methane with CO to aromatics in a multi-stream reactor system. Zn/HZSM-5 and Mo/HZSM-5 were observed to be rather effective for the catalytic formation of aromatics from the coupling reaction of methane with CO. Temperature-programmed reaction has further proven the efficiency of the coupling of methane and CO over Zn/HZSM-5 catalyst. The results were also validated in a conventional fixed-bed reactor coupled with GC. The results propose that the coupling methane with CO toward benzene and naphthalene can be catalyzed by Zn/HZSM-5 at 500 ° C. Both methane and CO are needed for the formation of reactive coke on the catalyst, and the reactive coke may be the initial product in the producing of hydrocarbons. © 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to investigate the effect of acid properties on the coke behavior and stability of butene aromatization, we prepared the AHZSM-5 samples with various acid properties by the methods of hydrothernial treatment and K addition. The reaction of butene aromatization was carried out at 350 degrees C and 0.5 MPa in a continuous flow fixed bed. The characterization of the fresh/coked catalysts with NH3-TPD, N-2 adsorption-desorption measurement, and TG techniques has shown that a large amount of acid sites (high acid density) of the AHZMS-5 catalyst can cause a large quantity of coke deposit and serious channel blockage, and so result in a rapid loss of aromatization activity. On the contrary, after a great reduction in strong acid sites of AHZSM-5 catalyst resulting from some K-modification, the presence of only many weak acid sites also could not lessen the formation of coke nor improve the reaction stability of butene aromatization. Interestingly, the simultaneous reduction in the strong and weak acid sites to a desirable level by hydrothermal treating the AHZSM-5 catalyst at a proper temperature can effectively suppress the coke formation and channel blockage, and thus improve its olefin aromatization stability. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic performances of methane dehydroaromatization (MDA) under non-oxidative conditions over 6 wt.% Mo/HZSM-5 catalysts calcined for different durations of time at 773 K have been investigated in combination with ex situ H-1 MAS NMR characterization. Prolongation of the calcination time at 773 K is in favor of the diffusion of the Mo species on the external surface and the migration of Mo species into the channels, resulting in a further decrease in the number of Bronsted acid sites, while causing only a slight change in the Mo contents of the bulk and in the framework structure of the HZSM-5 zeolite. The MoQ(x) species associated and non-associated with the Bronsted acid sites can be estimated quantitatively based on the 1H MAS NMR measurements as well as on the assumption of a stoichiometry ratio of 1: 1 between the Mo species and the Bronsted acid sites. Calcining the 6 wt.% Mo/HZSM-5 catalyst at 773 K for 18 h can cause the MoOx species to associate with the Bronsted acid sites, while a 6 Wt-% MO/SiO2 sample can be taken as a catalyst in which all MoOx species are non-associated with the Bronsted acid sites. The TOF data at different times on stream on the 6 wt.% Mo/HZSM-5 catalyst calcined at 773 K for 18 h and on the 6 Wt-% MO/SiO2 catalyst reveal that the MoCx species formed from MoOx associated with the Bronsted acid sites are more active and stable than those formed from MoOx non-associated with the Bronsted acid sites. An analysis of the TPO profiles recorded on the used 6 wt.% Mo/HZSM-5 catalysts calcined for different durations of time combined with the TGA measurements also reveals that the more of the MoCx species formed from MoOx species associated with the Br6nsted acid sites, the lower the amount of coke that will be deposited on it. The decrease of the coke amount is mainly due to a decrease in the coke burnt-off at high temperature. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Density functional calculations have been employed to investigate the locating and binding of lanthanum cation, i.e., La(OH)(2)(+), on HZSM-5 zeolite. Through geometry optimization, it was determined that lanthanum ions are favorably accommodated in the two 6-T rings of the straight channels (Clusters 1 and 2, see Sec. III A for details). Cluster 1 was found to exist in prior to Cluster 2 due to the preference of Al substitution in the T11 site (Cluster 1) rather than in the T8 site (Cluster 2). Geometry-optimization of Cluster 1 containing another two lanthanide ions Nd3+ and Yb3+ was also carried out and it was found that a monotonic decrease in Ln-O bond length will take place as the atomic number increases, conforming well to the rule of lanthanide contraction. Some of the optimized parameters are comparable to the corresponding experimental values in Y zeolite, which confirms that the optimized configurations are acceptable. The average frequencies of hydroxyls attached to La3+ or Yb3+ in Cluster 1 fall at 3609.16 and 3579.76 cm(-1), respectively, with the gap of these two frequencies close to that in the sodalite cage of Y zeolite. Compared to H-form zeolite, the charges on both Al and O atoms in Ln-ZSM-5 zeolite show an obvious increase, which will undoubtedly lead to a stronger mutual interaction and hence enhance the stability of the [AlO4](-) anion. Moreover, the Ln(OH)(2)(+) seem to have thickened the zeolite framework, which can effectively retard the process of dealumination. Through the evaluation of the possibility for dimer formation, it turned out that when the exchange degree arrived to approximately 0.28, lanthanum monomers began to aggregate into dimers, and were completely converted into dimers when the exchange degree approached 0.60. (C) 2003 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The integrated pilot-scale dimethyl ether (DME) synthesis system from corncob was demonstrated for modernizing utilization of biomass residues. The raw bio-syngas was obtained by the pyrolyzer/gasifier at the yield rate of 40-45 Nm(3)/h. The content of tar in the raw bio-syngas was decreased to less than 20 mg/Nm(3) by high temperature gasification of the pyrolysates under O-2-rich air. More than 70% CO2 in the raw bio-syngas was removed by pressure-swing adsorption unit (PSA). The bio-syngas (H-2/CO approximate to 1) was catalytically converted to DME in the fixed-bed tubular reactor directly over Cu/Zn/Al/HZSM-5 catalysts. CO conversion and space-time yield of DME were in the range of 82.0-73.6% and 124.3-203.8 kg/m(cat)(3)/h, respectively, with a similar DME selectivity when gas hourly space velocity (GHSV, volumetric flow rate of syngas at STP divided by the volume of catalyst) increased from 650 h(-1) to 1500 h(-1) at 260 degrees C and 4.3 MPa. And the selectivity to methanol and C-2(+) products was less than 0.65% under typical synthesis condition. The thermal energy conversion efficiency was ca. 32.0% and about 16.4% carbon in dried corncob was essentially converted to DME with the production cost of ca. (sic) 3737/ton DME. Cu (111) was assumed to be the active phase for DME synthesis, confirmed by X-ray diffraction (XRD) characterization.