269 resultados para Copper Oxides
Resumo:
Catalytic NO decomposition on LaSrMn1-x Ni (x) O4+delta (0 a parts per thousand currency sign x a parts per thousand currency sign 1) is investigated. The activity of NO decomposition increases dramatically after the substitution of Ni for Mn, but decreases when Mn is completely replaced by Ni (x = 1.0). The optimum value is at x = 0.8. These indicate that the catalytic performance of the samples is contributed by the synergistic effect of Mn and Ni. O-2-TPD and H-2-TPR experiments are carried out to explain the change of activity. The former indicates that only when oxygen vacancy is created, could the catalyst show enhanced activity for NO decomposition; the latter suggests that the best activity is obtained from catalyst with the most matched redox potentials (in this work, the biggest Delta T and Delta E values).
Resumo:
Mass spectrometry is not able to differentiate NOx and N2 from other interferences (e.g. CO and C2H4) in the deNOx reactions. In the present study, a quantitative method for analysis of NOx and N2 simultaneously in these reactions with an assisted converter operated at higher temperature under O2-rich condition, which eliminates the interferences, is developed. The NOx conversion from this method is comparable to the one from an Automotive Emission Analyser equipped with NOx electrochemical sensor. Two types of deNOx reactions are tested in terms of selectivity of N2 production. The application of this method is discussed.
Resumo:
Liquid phase oxidation of cyclohexane was carried out under mild reaction condition over copper pyrophosphate catalyst in CH3CN using hydrogen peroxide as an oxidant at the temperature between 25 and 80 degrees C. The copper pyrophosphate catalyst was characterized by means of XRD, FT-IR and water contact angle measurement. It was found that appropriate surface hydrophobicity is the key factor for the excellent performance of the catalyst. In addition, a significant improvement for the cyclohexane conversion in the presence of organic acid was observed.
Resumo:
A new polyoxotungstate complex [Na-2(H2O)(8)][Na-8(H2O)(20)][Cu(en)(2)][W12O42] center dot 3 H2O (1) (en = ethylenediamine) has been synthesized in aqueous solution and characterized by elemental analysis, IR spectroscopy and TG analysis, together with a single crystal X-ray diffraction study. In compound 1, the Cu(en)(2)(2+) complex cation links the [W12O42](12-) anions to form a I D chain, and the ID chains are further interconnected with Na-8(H2O)(20)(8+) and Na-2(H2O)(8)(2+) cations to construct a new 3D framework.
Resumo:
Two new copper-thiacalix[4]arene compounds, [Cu-2(1)-Cl-2(H(4)TC4A)](CH3OH) (1) and [Cu(I)2Cl(2)(H(4)PTC4A)](CH3OH)(CHCl3)(0.5) (2) (where H(4)TC4A = p-tert-butylthiacalix[4]arene and H(4)PTC4A = p-phenylthiacalix[4]arene), were synthesized by the solvothermal method in the mixed CH3OH/CHCl3 (1: 1) solvent and reassembled in air at room temperature to two other structures, [(Cu4Cl3)-Cl-II(HCO2)(TC4A)(CH3-OH)(2)(H2O)](CHCl3)(CH3OH)(2.7) (3) and [(Cu4Cl4)-Cl-II(PTC4A)(CH3OH)(4)] (4), respectively. All these four compounds were characterized by TG analyses, FTIR spectroscopy, and singlecrystal X-ray diffraction analyses. Compounds 1 and 2 feature two-dimensional layered networks, while compounds 3 and 4 are assembled by some tetranuclear units.
Resumo:
In the mixed-metal complex catena-poly[bis[diaquasilver(I)] [bis[aquacopper(II)]-mu(3)-pyridine-2,5-dicarboxylato-2': 1: 1'kappa N-5,O-2: O-5: O-5, O-5'-mu-pyridine-2,5-dicarboxylato-2: 1 kappa(4) N, O-2: O-5, O-5'-disilver(I)-mu(3)-pyridine-2,5-dicarboxylato-1: 1': 2 '' kappa(5) O-5, O-5': O-5: N, O-2-mu pyridine-2,5-dicarboxylato-1': 20 ''kappa(4) O-5, O-5': N, O-2] hexahydrate], {[Ag(H2O)(2)][AgCu(C7H3NO4)(2)(H2O)] center dot 3H(2)O}(n), a square-pyramidal Cu-II center is coordinated by two N atoms and two O atoms from two pyridine-2,5-dicarboxylate (2,5-pydc) ligands and a water molecule, forming a [Cu(2,5-pydc)(2)-( H2O)](2-) metalloligand. One Ag I center is coordinated by five O atoms from three 2,5-pydc ligands and, as a result, the [Cu(2,5-pydc)(2)(H2O)](2-) metalloligands act as linkers in a unique mu(3)-mode connecting Ag-I centers into a one-dimensional anionic double chain along the [101] direction.
Resumo:
The title compound, [Cu(C5H3N2O2)(2)(H2O)(2)], is a new polymorph of the previously reported compound [Klein et al. (1982). Inorg. Chem. 21, 1891-1897]. The Cu-II atom, lying on an inversion center, is coordinated by two N atoms and two O atoms from two pyrazine-2-carboxylate ligands and by two water molecules in a distorted octahedral geometry with the water molecules occupying the axial sites. Intermolecular O-H center dot center dot center dot O, O-H center dot center dot center dot N and C-H center dot center dot center dot O hydrogen bonds connect the complex molecules into a two-dimensional layer parallel to (10 (1) over bar), whereas the previously reported polymorph exhibits a three-dimensional hydrogen-bonded network.
Resumo:
Two mononuclear neutral copper(I) complexes, Cu(L-1)PPh3 (1), Cu(L-2)(PPh3)(2) (2) ([L-1](-) = [{N((C6H3Pr2)-Pr-i-2,6)C(H)}(2)CPh](-); [L-2](-) = [{N(C6H5)C(H)}(2)CPh](-)) have been synthesized and structurally characterized by X-ray crystallography. In complex 1, the copper(I) atom is in a distorted three-coordinate trigonal planar environment, whereas in complex 2 with the less sterically hindered beta-dialdiminato ligand, the copper(I) atom is the centre of a four-coordinate distorted tetrahedron. At room temperature complexes 1 and 2 in a film of PMMA exhibit green emission at 543 and 549 nm with lifetimes of 5.28 and 5.32 ns, respectively.
Resumo:
Luminescent heteroleptic Cu-I complexes based on asymmetrical iminephosphine ligands exhibit improved electrochemical and photochemical stability as compared to the analogous complexes based on traditional diimine or diphosphine ligands.
Resumo:
A new fluorescent sensor for the sensitive and selective detection of cyanide (CN-) in aqueous media was developed herein. The sensing approach is based on CN--modulated quenching behavior of Cu2+ toward the photoluminescence (PL) of CdTe quantum dots (QDs). In the presence of CN-, the PL of QDs that have been quenched by Cu2+ was found to be efficiently recovered, which then allows the detection of CN- in a very simple approach. Experimental results showed that the pH of the buffer solution, concentration of copper ions, and size of CdTe QDs all influenced the response of the sensor to CN-. Under the optimal conditions, a good linear relationship between the PL intensity and the concentration of CN- can be obtained in the range of 3.0 x 10(-7) to 1.2 x 10(-5) M, with a detection limit as low as 1.5 x 10(-7) M. In addition, the present fluorescent sensor possesses remarkable selectivity for cyanide over other anions, and negligible influences were observed on the cyanide detection by the coexistence of other anions or biological species (such as albumin and typical blood constituents).
Resumo:
We have observed, respectively, a negative differential resistance (NDR) and switching conduction in current-voltage (I-V) characteristics of organic diodes based on copper phthalocyanine (CuPc) film sandwiched between indium-tin-oxide (ITO) and aluminum (Al) by controlling the evaporation rate. The NDR effect is repeatable which can be well, controlled by sweep rate and start voltage, and the switching exhibits write-once-read-many-times (WORM) memory characteristics. The traps in the organic layer and interfacial dipole have been used to explain the NDR effect and switching conduction. This opens up potential applications for CuPc organic semiconductor in low power memory and logic circuits.
Resumo:
convenient and efficient synthesis of spiro-fused pyrazolin-5-one N-oxides starting from readily available 1-carbamoyl-1-oximylcycloalkanes is developed. This general protocol features a novel and facile way for access to the five-membered azaheterocycles by formation of a new N-N single bond. The key cyclization step utilizes the formation of an N-oxonitrenium intermediate, mediated by the hypervalent iodine reagent PIFA, and its subsequent intramolecular trapping by the amide moiety under rather mild experimental conditions.
Resumo:
A new hydrogen-bonded dinuclear copper(II) coordination compound has been synthesized from the Schiff-base ligand 6-(pyridine-2-ylhydrazonomethyl)phenol (Hphp). The molecular structure of [Cu-2(php)(2)(H2O2)(2)(ClO4)](ClO4)- (H2O) (1), determined by single-crystal X-ray diffraction, reveals the presence of two copper(II) centers held together by means of two strong hydrogen bonds, with O center dot O contacts of only 2.60-2.68 angstrom. Temperature-dependent magnetic susceptibility measurements down to 3 K show that the two metal ions are antiferromagnetically coupled (J = -19.8(2) cm(-1)). This exchange is most likely through two hydrogen-bonding pathways, where a coordinated water on the first Cu, donates a H bond to the O atoms of the coordinated php at the other Cu. This strong O center dot H (water) bonding interaction has been clearly evidenced by theoretical calculations. In the relatively few related cases from the literature, this exchange path, mediated by a (neutral) coordinated water molecule, was not recognized.
Resumo:
MgO supported copper salt of molybdovanadophosphoric acid H4PMo11VO40 catalysts were prepared in alcohol by impregnation and the carbon deposition over these catalysts during the n-hexanol oxidation reaction was studied. The coke predominantly deposited on the catalyst surface in the form of CH., and it was not found that it caused the deactivation of the catalyst. The XRD, IR, XPS characterizations reveal that the Keggin structure of the CPMV was unaffected by carbon deposition. Moreover, it was shown that the supported CPMVs over the MgO surface can be beneficial to eliminate the coke. The temperature programmed oxidation (TPO) study showed that coke was formed over the catalyst on two different sites: (1) deposited on the CPMVs which can be burn off at a low temperature; (2) deposited on the MgO which could only be removed at higher temperature. The coke content reached constant with the reaction time increasing.