141 resultados para Colloid cyst
Resumo:
We initiate a systematic exploration of a natural polymer, chitosan, as a structural material for designing functional layers on electrode surfaces in this work. Au colloid films are organized on chitosan layer by adsorption. We have successfully constructed a multilayer An nanoparticle assembly through electrostatic interactions on chitosan functionalized quartz substrates by the alternate treatment of the substrate with solution of citrate-stabilized gold nanoparticles (negatively charged) and chitosan solution (positively charged). The resulting substrates were characterized by UV-Vis spectrometry, atomic force microscopy (AFM), and electrochemical impedance spectroscopy (EIS) measurements. These assemblies of colloid An multilayer are highly stable, and can be kept for a long time in distilled water, only being removed by scratching or extreme electrochemical conditions.
Resumo:
Recently, a novel approach for preparing SERS and SPR substrates was developed, which indicates a potential application in tailoring the interfacial structure of an electrode surface. In this study, (3-mercaptopropyl)trimethoxysilane (MPTMS) was selected as a polymeric adhesive layer, and a low concentration of colloid Au solution was used to achieve a more accurate control over interface morphology at nanoscale dimensions due to slow self-assembling kinetics of gold nanoparticle's. Subsequent seeding growth of these MPTMS-supported submonolayers of gold nanoparticles in Au3+/NH2OH aqueous solution enlarges particle size and eventually results in the generation of conductive gold films (similar to previous (3-aminopropyl)trimethoxysilane-supported gold films). Such tunable interface structure was evaluated by atomic force microscopy (AFM). Also, ac impedance spectroscopy (ACIS) and cyclic voltammograms were performed to evaluate electrochemical properties of the as-prepared interfaces by using Fe(CN)(6) (3-/4-) couples as a probe. Furthermore, relevant theories of microarray electrodes were introduced into this study to explain the highly tunable electrochemical properties of the as-prepared interfaces. As a result, it is concluded that the electrochemical properties toward Fe(CN)(6) (3-/4-) couples are highly dependent on the active nanoelectrode (nanoparticles) area fraction and nanoparticles are fine-tuners of interfacial properties because the number density. (numbers/unit area) and size of nanoparticles are highly tunable by self-assembling and seeding growth time scale control. This is in agreement with the theoretical expectations for a microarray electrode if a single nanoparticle tethered to a blocking SAM is taken as a nanoelectrode and 2-D nanoparticle assemblies are taken as nanoelectrode arrays.
Resumo:
Gold nanopartides were Immobilized onto the electrode surface by simple self-assembly technique. Interestingly, the ensembles of these nanopartides exhibit quantized charging behaviors in aqueous solution. Possible mechanism for such behaviors was proposed.
Resumo:
Humid solid state reaction at room temperature was utilized for the first time to coat Y2O3 : Eu3+ particles with alumina. The particles were studied with an X-ray photoelectron spectrometer (XPS), a scanning electron microscope (SEM), and an energy dispersive spectrometer (EDS). XPS results show that the yttrium and europium contents are decreased and that the aluminum content is the highest except for that of oxygen after coating. SEM and EDS results show that particles are coated with a thin shell of alumina.
Resumo:
Stable colloidal solutions of gold nanoparticles surface-derivatized with a thiol monolayer have been prepared using two-phase (water-nitrobenzene) reduction of AuCl4- by sodium borohydride in the presence of 2-mercapto-3-n-octylthiophene (MOT). This kind of surface-functionalized gold nanoparticles can be easily incorporated into the poly(3-octylthiophene) (POT) films on electrode in the process of electrochemical polymerization leading to POT-gold nanoparticle (POT-Au) composite films. Scanning probe microscopy (SPM) and X-ray photoelectric spectroscopy (XPS) have been employed to characterize the surface-derivatized particles and the resulting films. The method of incorporation of nanoparticles into polymer by surface-derivatization and in situ polymerization can also be employed to prepare many other polymer-nanoparticle compostie materials.
Resumo:
Gold nanoparticles with size 3-10 nm (diameter) were prepared by the reduction of HAuCl4 in a CTAB/octane + 1-butanol/H2O reverse micelle system using NaBH4 as the reducing agent. The as-formed gold nanoparticle colloid was characterized by UV/vis absorption spectrum and transmission electron microscopy(TEM). Various capping ligands, such as alkylthiols with different chain length and shape, trioctylphosphine (TOP), and pyridine are used to passivate the gold nanoparticles for the purpose of self-organization into superstructures. It is shown that the ligands have a great influence on the self-organization of gold nanoparticles into superlattices, and dodecanethiol C12H25SH is confirmed to be the best ligand for the self-organization. Self-organization of C12H25SH-capped gold nanoparticles into 1D, 2D and 3D superlattices has been observed on the carbon-coated copper grid by TEM without using any selective precipitation process.
Preparation, structure, and properties of three-dimensional ordered alpha-Fe2O3 nanoparticulate film
Resumo:
alpha-Fe2O3 nanoparticulate films could be formed on the surface of alpha-Fe2O3 hydrosol after aging of the hydrosol or by compressing of the nanoparticles on the sol surface, in. which a three-dimensional ordered structure was constructed by the Langmuir-Blodgett; technique and colloid chemical methods. The structure of the LB film was characterized by AFM, TEM, XPS, and UV-vis spectra and small-angle X-ray diffraction. Gas-sensing measurement shows that the LB film has good sensitivity to alcohols at room temperature,
Resumo:
A novel method using LB films as precursors to prepare pure inorganic ordered film with periodic structure was developed. Surfactant-stabilized SnO2 nanoparticulate organosols and TiO2 nanoparticulate organosols were prepared and used as spreading solutions. Using LB technique, the good film-forming ability of the surfactant-stabilized SnO2 nanoparticles and TiO2 nanoparticles was confirmed by the determination of the pi -A isotherms. The surfactant-stabilized SnO2 and TiO2 nanoparticulate monolayers were fabricated on the water surface and then were transferred to solid substrates (CaF2, quartz, silicon, and so on) alternately, layer-by-layer. Then the as-deposited alternate LB film was treated at different temperatures. The as-deposited alternate LB film and the treated film were characterized by Fourier transform infrared spectroscopy, UV visible spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results indicate that our method was successful. The as-deposited alternate LB film formed a periodic structure with a long spacing of 6.5 nm that was composed of SnO2 nanoparticles, TiO2 nanoparticles, and arachidic acid. The treated film composed of SnO2 nanoparticles and TiO2 nanoparticles formed a pure inorganic periodic structure with an ordered distance of 5.4 nm. (C) 2001 Academic Press.
Resumo:
In this presentation, a reverse micelle technique was described to create colloid gold nanoparticles and their self-organization into superlattices. Gold nanoparticles were prepared by the reduction of HAuCL4 in CTAB/octane + 1-butanol/H2O reverse micelle system using NaBH4 as reducing agent. Dodecanethiol (C12H25SH) was used to passivate the gold nanoparticles immediately after formation of the gold colloid. After re-dispersing in toluene under ultrasonication, a supernatant containing nearly monodispersed dodecanethiol-capped gold nanoparticles was obtained. Self-organization of the gold nanoparticles into 1D, 2D and 3D superlattices was observed on the carbon-coated copper grid by TEM. UV-vis absorption spectra were also used to characterize the gold colloids with and without dodecanethiol capping. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.
Resumo:
A unique reverse micelle method has been developed to prepare gold-coated iron (Fe@Au) nanoparticles. XRD, UV/vis, TEM, and magnetic measurements are utilized to characterize the nanocomposites. XRD only gives FCC patterns of gold for the obtained nanoparticles. The absorption band of the Fe@Au colloid shifts to a longer wavelength and broadens relative to that of the pure gold colloid. TEM results show that the average size of Fe@Au nanoparticles is about 10 nm, These nanoparticles are self-assembled into chains on micron scale under a 0.5 T magnetic field. Magnetic measurements show that the particles are superparamagnetic with a blocking temperature (T-B) of 42 K, At 300 K (above T-B), no coercivity (Hc) and remanence (M-r) is observed in the magnetization curve, while at 2K (below T-B) He and M, are observed to be 728 Oe and 4.12 emu/g, respectively, (C) 2001 Academic Press.
Resumo:
Multilayer assemblies of silver doped ZnS colloid and polycation were fabricated by a self-assembly technique exploiting electrostatic interaction. UV/Vis spectra showed the uniform deposition process and X-ray photoemission spectroscopy (XPS) confirmed the coexistence of silver. It was found that the emission spectra of the silver doped ZnS colloid red-shifted to 528 nm comparing with undoped ZnS colloid. However, the most important finding was that the luminescence intensity of doped ZnS assembled in films was much stronger than that of undoped ZnS in films and that of doped ZnS in the spin-casting film. The mechanism of the enhancement luminescence was discussed. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
The electrochemical behavior and charge transport of colloidal polypyrrole particles (without stabilizer) modified electrode have been investigated. The voltametric results show that the electrochemical behavior of colloidal polypyrrole is different from that of polypyrrole synthesized electrochemically. The strong adsorption of the colloidal particles on substrate makes it easy to form a polypyrrole modified electrode. The charge transport of polypyrrole is controlled by the diffusion of counterions.
Resumo:
The hydrosol of SnO2 nanoparticles (NP) have been prepared by colloid chemistry method. The composite LB monolayer and multilayer of SnO2 NP-AA have been obtained by LB technique at the gas-liquid interface of the hydrosol subphase. The structures of the monolayer and multilayer were characterized by IR, UV-Vis, small angle X-ray diffraction spectroscopy and TEM technique, The results indicate that the coverage of SnO2 NP at the composite monolayer's surface is high and the sites of SnO2 NP are similar. The multilayer has good periodic structure.
Resumo:
The epitaxial crystallization behavior of high-density polyethylene on the boundary of highly oriented isotactic polypropylene (iPP) substrates has been investigated by means of atomic force microscopy (AFM) and transmission electron microscopy (TEM). The results obtained from AFM and TEM indicate that the epitaxial nucleation of HDPE on the highly oriented iPP substrates occurs earlier than that in the pure HDPE phase, i.e., homogeneous nucleation. Therefore the epitaxially grown HDPE lamellae can grow across the boundary of the iPP substrate into the HDPE spherulitic phase with the epitaxial orientation relationship remaining.