571 resultados para CE3 -DOPED CA2AL2SIO7
Resumo:
An erbium-doped phosphate glass fibre has been drawn by the rod-in-tube technique in our laboratory. The gain for the Er3+-doped phosphate glass fibre with different pump powers and with different input signal wavelengths is investigated. The 2.2-cm-long fibre, pumped by a single-mode 980-nm fibre-pigtailed laser diode, can provide a net gain per unit length greater than 1.8dB/cm. The pump threshold is about 50 mW at the wavelength of 1534 nm, and below 70 mW at 1550 nm. The gain linewidth of the Er3+-doped phosphate glass fibre is greater than 34 nm and can cover the C band in optical communication networks.
Resumo:
Compositional influences on the spectroscopic properties of Yb3+ and the structural variations with the introduction of YbF3 were studied in fluorophosphate glasses. Emission cross-section (sigma(emi)) and gain coefficient (sigma(emi) x tau(f)) were calculated which exhibit maximum at RF2 = 33 mol%. YbF3 has an important effect on the glass forming ability of fluorophosphate glasses when RF2 is over 36 mol%. The study of Raman spectra showed big differences on the glass structure between non-Yb3+ and Yb3+ -doped glasses. The main building units in Yb3+-doped samples are metaphosphate groups, pyrophosphate groups (P-2(O,F)(7), PO3F), Al[F-6] +Al[O,F](6) and F3Al-O-AlF3 while those of the non-Yb3+-doped glasses are monophosphate group P(O,F)(4), little pyrophosphate group, Al[F-4] + Al[F-6] + Al[O,F](4) + Al[O,F](6) and F3Al-O-AlF3, which means Yb3+ ions contribute to a better glass polymerization and network uniformity. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Er3+ -doped strontium lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(1) (t = 2,4,6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 2.95 x 10(-20), Omega(4) = 0-91 X 10(-20), and Omega(6) = 0.36 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) --> I-4(15/2), S-4(3/2) I-4(15/2), and F-4(9/2) --> I-4(15/2) respectively were observed. The upconversion mechanisms are discussed based oil the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (C) 2004 Published by Elsevier B.V.
Resumo:
Broadband and upconversion properties were studied in Er3+/Yb3+ co-doped fluorophosphate glasses. Large Omega(6) and S-ed/(S-ed + S-md) values and the flat gain profile over 1530-1585 nm indicate the good broadband properties of the glass system. And a premise of using Omega(6) as a parameter to estimate the broadband properties of the glasses is proposed for the first time to our knowledge. Results showed that fluorescence intensity, upconversion luminescence intensity, the intensity ratio of red/green light (656 nm/545 nm) are closely related to the Yb3+:Er3+ ratio and Er3+ concentration, and the corresponding calculated lifetime of F-4(9/2) and S-4(3/2) states for red and green upconversion samples proves this conclusion. The upconversion mechanism is also discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Er3+-doped TeO2-based oxysulfide glasses have been prepared in argon atmosphere in carbon crucibles. The thermal analysis and spectroscopic properties of Er (3+) have been considered in terms of sulfide influence. As a function of composition, we have principally measured optical absorption, spontaneous emission and lifetime measurements. Judd-Ofelt theory was introduced to calculate bandwidth and emission cross-section. The results show the product FVMM x sigma(c) increase from 476.8 8 to 635.04 10(-21) cm(2) nm evidently with the addition of 10 mol% PbS into tellurite glass, which indicates a perfect effect on spectra property of Er3+ ions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Bulk-lasses have been prepared in the TeO2-ZnO-ZnCl2 systems. Their characteristic temperatures were determined and analyzed. Raman and FT-IR spectra were used to analyze the effect of ZnCl2 on the structure and spectral properties of tellurite glasses and OH- groups in this glass system. The spectroscopic properties including absorption spectra, emission cross-sections and fluorescence lifetimes of Yb3+ in TeO2-ZnO-ZnCl2 were measured and calculated. It is demonstrated that the progressive replacement less than 20 mol% of TeO2 by ZnCl2 improves the thermal stability, removes the OH- groups, turns TeO4 bipyramidal arrangement into TeO3 (and/or TeO3+1) trigonal pyramids structures and results in the decrease of the symmetry of the structure, which increases the emission cross-sections and lifetimes. But when the content of ZnCl2 up to 30 mol%, the glass system becomes more hygroscopic and introduces more OH- groups, which decrease the emission cross-sections and shorten the lifetimes. The results show that the glass system with (TeO2)-Te-69-(ZnO)-Zn-10-20ZnCl(2)-1Yb(2)O(3) is a desirable component for active laser media for high power generation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Effect of PbF2 on Yb3+ -doped fluorophosphate glasses is studied. Results indicate that proper amount of PbF2 has absolute advantages in improving the crystallization stability of fluorophosphate glasses. T, value performs a decreasing and increasing tendency with 25 mol% PbF2 as the turning-point. And the spectroscopic properties such as absorption and emission cross section, effective fluorescence linewidth are apparently enhanced with PbF2 over 25 mol%. Lasing parameters beta, I-sat and I-min increase slightly with the addition of PbF2. Raman analysis proves that over 20 mol% PbF2, destroys the phosphate vibration groups greatly. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The effects of F- ions in Yb3+-doped tellurite glass systems on the emission cross-section and measured fluorescence lifetime are investigated. The results show that both the emission cross-section and the fluorescence lifetime of Yb3+ ions increase from 1.32 to 1.39 pm(2) and from 0.93 to 1.12 ms respectively with the increase of F- ions from 0 to 10 mol% and that such oxyfluoride tellurite glass system is a promising laser host matrix for high power generation. FT-IR spectra were used to analyze the effect of F- ions on the structure of tellurite glasses and the change of OH- groups in this glass system. Analysis demonstrates that the addition of fluoride decreases the symmetry of the structure of tellurite glasses resulting in increasing of the emission cross-section and removes the OH- groups resulting in increasing of the measured fluorescence lifetime of Yb3+ ions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Effect of fluoride ions introduction on structural, OH- content and up-conversion luminescence properties in Er3+-doped heavy metal oxide glasses have been investigated. Structure was investigated, indicating that fluoride has an important influence on the phonon density, maximum phonon energy of host glasses. With increasing fluoride content, the up-conversion luminescence intensity and quantum efficiencies increase notably, which could not be explained only by the maximum phonon energy change of host glasses. Our results show that, with the introduction of PbF2, the decrease of phonon density and OH- content contributes more to the enhanced up-conversion emissions than that of maximum phonon energy. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of F- ions on physical and spectroscopic properties of the Yb3+ in tellurite glass system are investigated. The results show that the glass system takes on good thermal stability with the content of ZnF2 lower than 15 mol%, both the emission cross-section and the fluorescence lifetime of Yb3+ ions increase evidently which indicate that such oxyfluoride tellurite glass system is a promising laser host matrix for high power generation. FT-IR spectra were used to analyze the effect of F- ions on the structure of tellurite glasses and OH- groups in this glass system. Analysis demonstrates that addition of fluoride decreases the symmetry of the structure of tellurite glasses which increases the emission cross-section and removes the OH- groups, and which improves the measured fluorescence lifetime of Yb3+ ions. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Er3+-doped oxyfluoride germanate glasses have been synthesized by the conventional melting and quenching method. The Judd-Ofelt intensity parameters were calculated based on the Judd-Ofelt theory and absorption spectra measurements. With the substitution of PbF2 for PbO, the Omega(2) parameter decreases, while the Omega(6) parameter increases. These change trends indicate that fluoride anions come to coordinate erbium cations and the covalency of the Er-O bond decreases. Structural and thermal stability properties were obtained by Raman spectra and differential thermal analysis, indicating that PbF2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. With increasing PbF2 content, the intensity of red (657nm) emissions increases significantly, while that of the green (525 and 546nm) emission increases slightly. The results indicate that PbF, has more influence on the red (657nm) emission than the green (525 and 546nm) emissions in oxyfluoride germanate glasses. The possible upconversion luminescence mechanisms have also been estimated and discussed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of F- ions in a germanium-lead-tellurite glass system oil the spectral and potential laser properties of the Yb3+ are investigated. The absorption spectra, lifetimes, the emission cross-sections and the minimum pump intensities of the glass system with and without F- ions have been measured and calculated. The results show that the fluorescence lifetime and the minimum pump intensity of Yb3+ ions increase evidently, which indicates that germanium lead-oxyfluoride tellurite glass is a promising laser host matrix for high power generation. FT-IR spectra were used to analyse the effect of F- ions on OH- groups in this glass system. Analysis demonstrates that addition of fluoride removes the OH- groups and results in improvement of fluorescence lifetime of Yb3+.
Resumo:
We present the results of a study that uses theoretical and experimental methods to investigate the characteristics of the upconversion luminescence of Tm3+/Yb3+ codoped TeO2-BiCl3 glass system as a function of the BiCl3 fraction. These glasses are potentially important in the design of upconversion fiber lasers. Effect of local environment around Tm3+ on upconversion fluorescence intensity was analyzed by theoretical calculations. The structure and spectroscopic properties were investigated in the experiments by measuring the Raman spectra, IR transmission spectra, and absorption and fluorescence intensities at room temperature. The results indicate that blue luminescence quantum efficiency increases with increasing BiCl3 content from 10 to 60 mol%, which were interpreted by the increase of asymmetry of glass structure, decrease of phonon energy and removing of OH- groups. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Er3+ -doped oxychloride germanate glasses have been synthesized by conventional melting and quenching method. Structural and thermal stability properties were obtained based on the Raman spectra and differential thermal analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of green (525 and 546 nm) emissions increases significantly, while the red (657 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the green emissions than the red emission in oxychloride germanate glasses. The possible upconversion luminescence mechanisms has also been estimated and discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
(100 - x)TeO2 - xNb(2)O(5) (x=5-20) mobic tellurite glasses doped with 0.5 mol.% Er2O3 were synthesized, and their thermal, mechanical, and spectroscopic properties were measured and compared to the properties of the typical 75TeO(2)-20ZnO-5Na(2)O (TZN) tellurite glass. The refractive index (n(d)), density (p), and glass transition temperature (T-g) of bulk glasses increase with the Nb2O5 content. The Vickers microhardness (H-v) of bulk glass in niobic tellurite glasses also increases with the Nb2O5 content. The values (2.5-3.2 GPa) of H, in the niobic tellurite glasses are 47-88% larger than that (1.7 GPa) in TZN glass. The effect of Nb2O5 content on absorption spectra, the Judd-Ofelt parameters Omega(t) (t = 2, 4, 6), fluorescence spectra and the lifetimes of Er3+ :I-13/2 level were also investigated, and the stimulated emission crosssection was calculated from McCumber theory. With increasing Nb2O5 content in the glass composition, the Omega(t) (t = 2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) Of I-13/2 of Er3+ increase, while the I-4(13/2) lifetimes of Er3+ decreases. Compared with TZN glass, the gain bandwidth properties of Er3+-doped TeO2-Nb2O5 glass is much larger than in tellurite glass based TeO2-ZnO-Na2O system, bismush-based glass, germanate, and silicate glasses, which indicates that TeO2-Nb2O5 glasses are better choice as a practical available host material for broadband Er3+-doped amplifier. (c) 2005 Elsevier B.V. All rights reserved.