235 resultados para César, Cayo Julio, 100-44 a. C.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, the cross-over rates of methanol and ethanol, respectively, through Nafion(R)-115 membranes at different temperatures and different concentrations have been measured and compared. The changes of Nafion(R)-115 membrane porosity in the presence of methanol or ethanol aqueous solutions were also determined by weighing vacuum-dried and alcohol solution-equilibrated membranes. The techniques of anode polarization and adsorption stripping voltarnmetry were applied to compare the electrochemical activity and adsorption ability, respectively. To investigate the consequences of methanol and ethanol permeation from the anode to the cathode on the performance of direct alcohol fuel cells (DAFCs), single DAFC tests, with methanol or ethanol as the fuel, have been carried out and the corresponding anode and cathode polarizations versus dynamic hydrogen electrode (DHE) were also performed. The effect of alcohol concentration on the performance of PtRu/C anode-based DAFCs was investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NaA zeolite membrane was successfully synthesized on a ceramic hollow fiber with an outer diameter of 400 mum, a thickness of 100 mum and an average pore radius of 0.1 mum. The as-synthesized membranes were characterized by XRD, SEM as well as gas permeation. A continuous C NaA zeolite membrane formed after a three-stage synthesis. The membrane thickness was similar to5 mum. Gas permeation data indicated that a relatively high quality NaA zeolite membrane formed on the ceramic hollow fiber support. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molar heat capacities of the two biphenyl liquid crystals, 3BmFF and 3BmFFXF3, with a purity of 99.7 mol% have been precisely measured by a fully automated precision adiabatic calorimeter in the temperature range between T = 80 and 350 K. Nematic phase-liquid phase transitions were found between T = 297 K and 300 K with a peak temperature of T-peak = (298.071 +/- 0.089) K for 3BmFF, and between T = 316 and 319 K with a peak temperature of T-peak = (315.543 +/- 0.043) K for 3BmFFXF3. The molar enthalpy (Delta(trs)H(m)) and entropy (Delta(trs)S(m)) corresponding to these phase transitions have been determined by means of the analysis of the heat capacity curves, which are (15.261 +/- 0.023) U mol(-1) and (51.202 +/- 0.076) J K-1 mol(-1) for 3BmFF, (31.624 +/- 0.066) kJ mol(-1) and (100.249 +/- 0.212) J K-1 mol(-1) for 3BmFFXF3, respectively. The real melting points (TI) and the ideal melting points (TO) with no impurities of the two compounds have been obtained from the fractional melting method to be (298.056 +/- 0.018) K and (298.165 +/- 0.038) K for 3BmFF, (315.585 +/- 0.043) K and (315.661 +/- 0.044) K for 3BmFFXF3, respectively. In addition, the transitions of these two biphenyl liquid crystals from nematic phase to liquid phase have further been investigated by differential scanning calorimeter (DSC) technique; the repeatability and reliability for these phase transitions were verified. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long methacrylate monolithic columns (100 cm x 320 mum i.d.) were prepared from silanized fused-silica capillaries of 320 mum i.d. by in situ copolymerization of butyl methacrylate (BMA) with ethylene dimethacrylate (EDMA) in the presence of a suitable porogen. The separation performance and selectivity of the column were evaluated and compared with a 25 cm x 320 mum i.d. column prepared in the same way by capillary high-performance liquid chromatography (mu-HPLC) The results showed that the 1 m long monolithic column can generate 33 x 10(3) plate number and exhibited good permeability, higher sample loadability, and separation capability. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silica-based functionalized terbium fluorescent nanoparticles were prepared, characterized and developed as a fluorescence probe for antibody labeling and time-resolved fluoroimmunoassay. The nanoparticles were prepared in a water-in-oil (W/O) microemulsion containing a strongly fluorescent Tb3+ chelate. N,N.N-1,N-1-12,6-bis(3'-aminomethyl-1'-pyrazolyl)phenylpyridine] tetrakis(acetate)-Tb3+ (BPTA-Tb3+), Triton X-100, octanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate (TEOS) and 3-[2-(2- aminoethylamino)-ethylamino]propyl-trimethoxysilane (AEPS) with ammonia water. The characterizations by transmission electron microscopy and fluorometric quantum methods show that the nanoparticles are spherical and uniform in size, 45 +/- 3 nm in diameter, strongly fluorescent with fluorescence yield of 10% and a long fluorescence lifetime of 2.0 ms. The amino groups directly introduced to the nanoparticle's surface by using AEPS in the preparation made the surface modification and bioconjugation of the nanoparticles easier. The nanoparticle-labeled anti-human alpha-fetoprotein antibody was prepared and used for time-resolved fluoroimmunoassay of (x-fetoprotein (AFP) in human serum samples. The assay response is linear from 0.10 ng ml(-1) to about 100 ng ml(-1) with the detection limit of 0.10 ng ml(-1). The coefficient variations (CVs) of the method are less than 9.0%. and the recoveries are in the range of 84-98% for human serum sample measurements. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In our previous work, it was shown that LiLaNiO/gamma-Al2O3 was an excellent catalyst for partial oxidation of heptane to syngas in a fixed-bed reactor at high temperature and the selectivity of CO was about 93%. However, pure oxygen was used as the oxidant. We have developed a dense oxygen permeation membrane Ba0.5Sr0.5Co0.8Fe0.2O3 that can supply pure oxygen for the reaction. In this work, the membrane was combined with the catalyst LiLaNiO/gamma-Al2O3 in one rector for the partial oxidation of heptane that is typical component of gasoline. A good performance of the membrane reactor has been obtained, with 100% n-heptane conversion and >94% hydrogen selectivity at the optimized reaction conditions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An effective Mo-1 V(0.3)Te(0.23)Nb(0.12)Ox catalysts for the selective oxidation of propane to acrylic acid was successfully prepared by using rotavap method. The catalyst was characterized by XRD and shown to contain (V0.07Mo0.93)(5)O-14, (Nb0.09Mo0.91)O-2.8,3MoO(2)(.)Nb(2)O(5), Mo5TeO16 and/or TeMo4O13, Te4Nb2O13 and a new TeMO (TeVMoO or TeVNbMoO; M = Mo, V and Nb) crystalline phase as the major phase. Regardless of the intrinsic catalytic characteristics of the catalyst, the external reaction conditions would have strong effects on the catalytic performance for propane oxidation. So in this paper, the effects of reaction conditions were investigated and discussed, including temperature, space velocity, V(air)/V(C3H8) ratio and V(steam)/V(C3H8) ratio. A stability test was also carried out on Mo1V0.3Te0.23Nb0.12Ox catalyst. The experimental run was performed during 100 h under the optimized reaction conditions. During the 100 h of operation, propane conversion and acrylic acid selectivity remained at about 59 and 64%, respectively. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental data are presented to show the influence of asphaltenes and resins on the stability and demulsification of emulsions. It was found that emulsion stability was related to the concentrations of the asphaltene and resin in the crude oil, and the state of dispersion of the asphaltenes and resins (molecular vs colloidal) was critical to the strength or rigidity of interfacial films and hence to the stability of the emulsions. Based on this research, a possible emulsion minimization approach in refineries, which can be implemented utilizing microwave radiation, is also suggested. Comparing with conventional heating, microwave radiation can enhance the demulsification rate by an order of magnitude. The demulsification efficiency reaches 100% in a very short time under microwave radiation. (C) 2003 Elsevier Inc. All rights reserved.