126 resultados para Break strength


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slide-debris flow is debris flow which is transformed from landslide consecutively in a short time, it comprises of two phases: First, Landslide starts to slide; Second, landslide changes to debris flow. Slide-debris flow which brings great property and life loss happens frequently at home and abroad. In order to forecast the happening possibility and scope of slide-debris flow, transfromation mechanism of Slide-debris flow must be studied. Research on transformation mechanism of slide-debris flow is intersectant science of landslide kinetics and debris flow starting theory, It is a fringe problem as well as front problem of geological hazard. This paper takes Qingning slide-debris flow in Da County, Sichuan Province for example and has studied the mechanism of its instability and transfromation into debris flow through indoor test (including usual soil test and ring shear test) and digital modeling method.The research gets the following conclusions. Qingning Landslide took place mainly because of confined water head arising from rainfall infiltration. Before Landslide occurring, it rained continuously for 22 days, accumulated precipitation arrived at 521.6mm.Investigation shows that strata of Qingning Landslide contains quaternary loose accumulation, slip soil and highly weathered bedrock, which is a good condition for formation of confined water in the slope. Further more, groundwater seepage in the slope body and corresponding slope safety factor before landslide occurring have been computed through finite element method. The result shows that because of infiltration of rainfall, confined water head in the slope arose sharply, accordingly, the safety factor of the slope declined quickly. The result also shows that force put on the slide body by the rock mass detached from Dazhaiyan mountain was the direct factor for landslide occurring. Qingning slide-debris transformation mode has been summarized, the process the landslide changed into debris flow is divided into three phases in the prospective of macroscopic geological condition: landslide occurring, transformation and debris flow. Landslide occurring phase is from slope’ local creeping slide to Landslide occurring; transformation phase contains slide body sliding on the slide bed after slide occurring and sliding on the slope after shearing opening; debris flow phase is that slide body breaks up completely and flows downward into the ditches. The transformation mechanism of Qingning slide-debris flow has been studied through indoor ring shear test of slip soil. The result shows that transformation mechanism contains two points: first, during slide body sliding on the slide bed and slope after shearing opening, shearing shrinkage, grain crushing and grain layering brought about declining of its volume and produced excess pore water pressure, and because producing velocity of excess pore water pressure is much greater than its dissipating velocity, shear strength of slide body decreased sharply because of accumulated pore water pressure. Second, grains crushing and grains layering during slide body sliding brought about thick liquefied layer at the bottom of the slidebody, liquefied layer contained high water content and its shear strength was very low, its thickness increased as the sliding displacement increasing. Liquefied layer makes slide body sliding fast and easily break down to debris flow. Excess pore water pressure and liquefied layer made shear strength of slidebody became very low, furthermore, water in the pit of slope joining in the slidebody was also a facter that made slidebody accelerate the transformation. Influence of slide body thickness and fine grains content to transformation of slide-debris flow has been studied through ring shear test. The result reaches two conclusions. First, thickness of slide body affects transformation of slide-debris flow by two ways, porewater pressure and effect of “soft base” increases as thickness of slide body increasing.so the thicker slide body is ,the easier transformation is. Second, actual dissipating velocity of porewater pressure should be considered when studying the influence of fine grains content to tranformation of slide-debris flow. There should be a critical content of fine grains which makes the difference of producing and dissipating velocity of water pore pressre greatest, this value is the best for slide-debris transformation. The whole process of slide-debris flow transformation is reproduced through discrete element method. Transformation mechanism of slide-debris flow is studied through monitoring various parameters including pore water pressure, grain crushing and grain layering in the slide body during the transformation. The result confirms and supplements the transformation mechanism of slide-debris flow got from ring shear test well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rockmass movement due to mining steep metallic ore body is a considerable question in the surface movement and deformation issue caused by underground mining. Research on coal mining induced rockmass movement and its prediction problem have been performed for a long-term, and have achieved great progress at home and abroad. However, the rockmass movement caused by mining steep metal mine is distinctivly different from coal seam mining.. Existing surface movement laws and deformation prediction methods are not applicable to the rockmass movement caused by mining steep metal mine. So far the home and abroad research to this theory is presently at an early stage, and there isn’t mature theory or practical prediction method, which made a great impact on production. In this paper, the research object—Jinchuan nickel mine, which is typical steep metal mine, characterized by complex geological conditions, developed faults, cracked rockmass, high geostress, and prominent engineering stability problems. In addition, backfill mining method is used in the mine, the features of rockmass movement caused by this mining method are also different from other mining methods. In this paper, the laws of rock mass movement, deformation and destroy mechanism, and its prediction were analyzed based on the collection of data, detailed in-sit engineering geology survey, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring of ground surface movement, ground subsidence basin with apparent asymmetry is developing, the influence scope is larger in the upper faulted block than in the lower faulted block, and the center of ground movement is moving along the upper faulted block direction with increasing depth of mining. During the past half and seven years, the largest settlement has amounted to 1287.5mm, and corresponding horizontal displacement has amounted to 664.6mm. On the ground surface, two fissure belts show a fast-growing trend of closure. To sum up, mining steep metal mine with backfill method also exist the same serious problem of rockmass movement hazards. Fault, as a low intensity zone in rockmass, when it located within the region of mining influence, the change of potential energy mainly consumed in fault deformation associated with rockmass structure surface friction, which is the essence of displacement and stress barrier effects characterized by fault rupture zone. when steep fault located in the tensile deformation region incurred by underground excavation, no matter excavation in hangingwall or in footwall of the fault, there will be additional tensile stress on the vertical fault plane and decrease in the shear strength, and always showing characteristics of normal fault slip, which is the main reason of fault escarpment appeared on the ground surface. The No.14 shaft deformation and failure is triggered by fault activation, which showed with sidewall move, rupture, and break down features as the main form of a concentrated expression of fault effects. The size and orientation of principal stress in surrounding rock changed regularly with mining; therefore, roadway deformation and damage at different stages have different characteristics and distribution models. During the process of mining, low-intensity weak structures surface always showed the most obvious reaction, accompany with surface normal stress decrease and shear strength bring down, to some extent, occurred with relative slide and deformation. Meanwhile, the impact of mining is a relatively long process, making the structure surface effect of roadway deformation and damage more prominent than others under the influence of mining. Roadway surrounding rockmass deformation caused by the change of strain energy density field after excavation mainly belongs to elastic deformation, and the correspondented damage mainly belongs to brittle rupture, in this circumstance, surrounding rockmass will not appear large deformation. The large deformation of surrounding rockmass can only be the deformation associated with structure surface friction or the plastic deformation of itself, which mainly caused by the permanent self-weigh volume force,and long-term effect of mining led to the durability of this deformation Good pitting fill effect and supporting effect of backfill, as well as the friction of rockmass structure surface lead to obvious macro-rockmass movement with long-lag characteristics. In addition, the loss of original intensity and new structure surface arisen increased flexibility in rockmass and fill deformation in structure surface, which made the time required for rockmass potential energy translate into deformation work associated with plastic deformation and structure surface friction consumed much, and to a large extent, eliminated the time needed to do those plastic work during repeated mining, all of which are the fundamental reason of rockmass movement aftereffect more significant than before. Mining steep deposits in high tectonic stress area and in gravity stress area have different movement laws and deformation mechanism. The steep deposit, when the vertical size of the mining areas is smaller than the horizontal size of the orebody, no matter mining in gravity stress area or in high tectonic stress area, they have similar features of ground movement with mining horizontal orebody; contrarily, there will appear double settlement centers on the ground surface under the condition of mining in high tectonic stress area, while there will always be a single center under the other condition. Meanwhile the ground movement lever, scale of mining influence area and macro features of ground movement, deformation and fracture are also different from mining in gravity stress area, and the fundamental reason lies in the impact of orientation of the maximum principal stress on rock movement features in in-site rock stress field. When mining thick and steep deposit, the ground surface movement and deformation characteristic curves are significantly different from excavating the horizontal ore bed and thin steep deposit. According to the features of rockmass movement rate, the development process of mining-induced rockmass movement is divided into three stages: raising stage, steadily stage and gradually decay stage. Considering the actual exploitation situation, GPS monitoring results and macro-characteristics of surface movement, the current subsidence pattern of Jinchuan No.2 mine is in the early stage of development. Based on analysis of surface movement rate, surface subsidence rate increase rapidly when mining in double lever at the same time, and reach its peak until the exploitation model ended. When double lever mining translate into single, production decreased, surface subsidence rate suddenly start to reduce and maintain a relatively low value, and the largest subsidence center will slowly move along with the hangingwall ore body direction with increasing depth of mining, at the same time, the scope and extent of subsidence in footwall ore body will begin magnify, and a sub-settlement center will appear on ground surface, accompanied with the development and closure trend of ground fissure, the surrounding rockmass of shaft and roadway will be confronted to more frequent and severe deformation and failure, and which will have a negative impact on the overall stability of No.2 mine mining. On the premise of continuity of rockmass movement, gray system model can be used in ground rockmass movement prediction for good results. Under the condition of backfill mining step by step, the loose effect of compact status of the hard, broken rockmass led to lower energy release rate, although surrounding rockmass has high elastic energy, loose and damage occurred in the horizontal ore body, which made the mining process safety without any large geological hazards. During the period of mining the horizontal ore body to end, in view of its special “residual support role”, there will be no large scale rockmass movement hazards. Since ground surface movement mainly related to the intensity of mining speed and backfill effect, on the premise of constant mining speed, during the period of mining the horizontal ore body to end, the rate of ground surface rockmass movement and deformation won’t have sudden change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tectonic dynamics of metallogenetic fluids is a new crossed subjects among fluid geology, mineral deposit geology and structural geology, and is one of the major current projects of geosciences. It is mainly focused on structures and tectonic dynamic induced by fluid motion, variation of physical condition of fluids (such as temperature and pressure), and interaction between chemical component of fluids and wall rocks in the crust. It takes features of deformation and metamorphysim, which formed during interaction between fluids and rocks and have been perserved in rocks, as basic research objects. After studying types, orders, distributions and fabrics of these features, and analyzing and testing physical and chemical information from these features by some techniques, it is intended to reconstruct moving process of fluids, dynamics of interaction between fluids and rocks, and dynamics of mineralizations. Three problems of tectonic dynamics of metallogenetic fluids, which have not been paid much attentions before, have been studied and discussed in this report. Three relative topics are including: 1)Double-fracturing induced by thermal stress and pressure of fluids and mineralization of Gold-copper in Breccia Pipe at the Qibaoshan in Shandong Province; 2)Parting structures induced by K-metasomatism in the Hougou area, northwestern Heibei province; 3)Migration mechanism of dissolved mass in Fe&S-rich fluids in Hougou gold deposit in Heibei province. After a synthetical study of two years, the author has made some new processes and progresses. The main new advances can be summaried as the following: 1)Thermal stress of fluids formed by temperature difference between fluids and country rock, during upword migration process of fluids with high temperature and pressure, can make rock to break, and some new fractures, which surfaces were uasally dry, formed. The breccia pipe at the Qibaoshan area in Shandong province has some distinct texture of fluidogenous tectonics, the breccia pipe is caused by double-fracturing induced by thermal stress and pressure, distribution of gold-corpper ore bodies are controlled powerfully by fluidogenous tectonics in the breccia pipe. 2)The author discovered a new kind of parting structures in K-alterated rocks in the northwestern part of Hebei province. The parting structures have some distinct geometry and fabrics, it is originated from the acting and reacting fores caused by K-metasomatism. Namely, the crystallizations of metasomatic K-feldspars are a volume expansion process, it would compress the relict fluid bodies, and the pressures in the relict fluid bodies gathered and increased, when the increased pressure of the fluid relict bodies is bigger than the strength of K-feldspars, the K-feldspars were broken with the strong compression, and the parting structures formed. 3)Space position replacing is a important transport pattern of dissolved mass in Fe&S-rich fluid. In addition, basing on views of tectonic dynamics of metallogenic fluids, and time-space texture of fluid-tectonic-lithogenetic-mineralization of the known gold-corpper mineral deposit and the subvolcanic complex at Qibaoshan area in Shandong province, this report does a detail prodict of position-shape-size of two concealed ore-bearing breccia pipe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jiyang & Changwei depressions are two neighboring depressions in Bahai Bay Basin, the famous oil rich basin in East China. The exploration activities in the past 40 years has proved that, within the basins, there exists not only plentiful sandstone hydrocarbon reservoirs (conventional), but also abundant special reservoirs as igneous rock, mudstone and conglomerate ones which have been knowing as the unconventional in the past, and with the prospecting activity is getting more and more detailed, the unconventional reservoirs are also getting more and more important for further resources, among which, the igneous lithological reservoir be of significance as a new research and exploration area. The purpose of this paper is, with the historical researches and data as base, the System Theory, Practice Theory and Modern Comprehensive Petroleum Geology Theory as guide, the theoretical and practice break through as the goal, and the existing problems in the past as the break through direction, to explore and establish a valid reservoir formation and distribution models for igneous strata in the profile of the eastern faulted basins. After investigating the distribution of the igneous rocks and review the history of the igneous rocks reservoirs in basins, the author focused on the following issues and correspondingly the following progresses have been made: 1.Come to a new basin evolution and structure model named "Combined-Basin-bodies Model" for Jiyang even Eastern faulted basins based on the study on the origin and evolution of Jiyang & Changwei basins, depending on this model, every faulted basin in the Bo-hai Bay Basin is consisted of three Basin-Bodies including the Lower (Mesozoic), Middle (Early Tertiary) and the Upper (Late Tertiary) Bodies, each evolved in different geo-stress setting and with different basin trend, shape and igneous-sedimentary buildings system, and from this one to next one, the basin experienced a kind of process named "shape changing" and "Style changing". 2. Supposed a serious of new realizations as follows (1) There were "multi-level magma sources" including Upper mantel and the Lower, Middle and even the Upper Shell magma Chambers in the historical Magma Processes in the basins; (2) There were "multi-magma accessing or pass" from the first level (Mantel faults) to the second, third and fourth levels (that is the different levels of fault in the basin sediment strata) worked in the geo-historical and magma processes; (3) Three tectonic magma cycles and more periods have been recognized those are matched with the "Basin -body-Model" and (4)The geo-historical magma processes were non-homogeneous in time and space scale and so the magma rocks distributed in "zones" or "belts". 3. The study of magma process's effect on basin petroleum conditions have been made and the following new conclusions were reached: (1) the eruptive rocks were tend to be matched with the "caped source rock", and the magma process were favorable to the maturing of the source rocks. (2) The magma process were fruitful to the accumulation of the non-hydrocarbon reservoirs however a over magma process may damage the grade of resource rock; (3) Eruptive activity provided a fruitful environment for the formation of such new reservoir rocks as "co-eruptive turbidity sandstones" and "thermal water carbonate rocks" and the intrusive process can lead to the origin of "metamorphism rock reservoir"; (4) even if the intrusive process may cause the cap rock broken, the late Tertiary intrusive rocks may indeed provide the lateral seal and act as the cap rock locally even regionally. All above progresses are valuable for reconstructing the magma-sedimentary process history and enriching the theory system of modem petroleum geology. 4. A systematic classification system has been provided and the dominating factors for the origin and distribution of igneous rock reservoirs have been worked out based on the systematic case studies, which are as follows: (1) The classification is given based on multi-factors as the origin type, litho-phase, type of reservoir pore, reservoir ability etc., (2) Each type of reservoir was characterized in a detailed way; (3) There are 7 factors dominated the intrusive reservoir's characteristics including depth of intrusion, litho-facies of surrounding rocks, thickness of intrusive rock, intrusive facies, frequency and size of the working faults, shape and tectonic deformation of rock, erosion strength of the rock and the time of the intrusion ect., in the contrast, 4 factors are for eruptive rocks as volcanic facies, frequency and size of the working faults, strength of erosion and the thermal water processing. 5. Several new concept including "reservoir litho-facies", "composite-volcanic facies" and "reservoir system" ect. Were suggested, based on which the following models were established: (1) A seven reservoir belts model for a intrusive unit profile and further more, (2) a three layers cubic model consisted of three layer as "metamorphic roe layer", "marginal layer" and "the core"; (3) A five zones vertical reservoir sequence model consisted of five litho-facies named A, B, C, D and E for a original lava unit and furthermore three models respectively for a erosion, subsidence and faulted lava unit; (4) A composite volcanic face model for a lava cone or a composite cone that is consisted of three facies as "crater and nearby face", "middle slope" and "far slope", among which, the middle slope face is the most potential reservoir area and producible for oil & gas. 6. The concept of "igneous reservoir" was redefined as the igneous, and then a new concept of "igneous reservoir system" was supposed which means the reservoir system consisted of igneous and associated non-igneous reservoirs, with non-hydrocarbon reservoir included. 7. The origin and distribution of igneous reservoir system were probed and generalized for the exploration applications, and origin models of the main reservoir sub-systems have been established including those of igneous, related non-igneous and non-hydrocarbon. For intrusive rocks, two reservoir formation models have been suggested, one is called "Original or Primary Model", and the another one is "Secondary Model"; Similarly, the eruptive rock reservoirs were divided in three types including "Highly Produced", "Moderately Produced" and "Lowly Produced" and accordingly their formation models were given off; the related non-igneous reservoir system was considered combination of eight reservoirs, among which some ones like the Above Anticline Trap are highly produced; Also, the non-hydrocarbon. Trap system including five kinds of traps was discussed. 8. The concept models for four reservoir systems were suggested, which include the intrusive system consisted of 7 kinds of traps, the land eruptive system with 6 traps, the under water eruptive system including 6 kinds of traps and the non-hydrocarbon system combined by 5 kinds of traps. In this part, the techniques for exploration of igneous reservoir system were also generalized and probed, and based on which and the geological progresses of this paper, the potential resources and distributions of every reservoir system was evaluated and about 186 millions of reserves and eight most potential non-hydrocarbon areas were predicted and outlined. The author believe that the igneous reservoir system is a very important exploration area and its study is only in its early stage, the framework of this paper should be filled with more detailed studies, and only along way, the exploration of igneous reservoir system can go into it's really effective stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of silica/polyimide nanocomposites was successfully prepared by the sol-gel reaction, tetraethoxysilane, (TEOS), was hydrolyzed by the water released from imidization at low and high temperature. Silica particles with diameter of around 30-50 nm were observed in the hybrid films by scanning electron microscopy. The flame retardance, decomposition temperature and glass transition temperature of the film increased with increasing silica content. The tensile strength increased slightly while the elongation at break of the films decreased with increasing silica content. (C) 2002 Kluwer Academic Publishers.