266 resultados para BRAIN MORPHOLOGY
Resumo:
We have reported a facile and general method for the rapid synthesis of hollow nanostructures with urchinlike morphology. In-situ produced Ag nanoparticles can be used as sacrificial templates to rapidly synthesize diverse hollow urchinlike metallic or bimetallic (such as Au/Pt) nanostructures. It has been found that heating the solution at 100 degrees C during the galvanic replacement is very necessary for obtaining urchinlike nanostructures. Through changing the molar ratios of Ag to Pt, the wall thickness of hollow nanospheres can be easily controlled; through changing the diameter of Ag nanoparticles, the size of cavity of hollow nanospheres can be facilely controlled; through changing the morphologies of Ag nanostructures from nanoparticle to nanowire, hollow Pt nanotubes can be easily designed. This one-pot approach can be extended to synthesize other hollow nanospheres such as Pd, Pd/Pt, Au/Pd, and Au/Pt. The features of this technique are that it is facile, quick, economical, and versatile.
Resumo:
Thin films of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) blend can phase separate upon heating to above its critical temperature. Temperature dependence of the surface composition and morphology in the blend thin film upon thermal treatment was studied using in situ X-ray photoelectron spectroscopy (XPS) and in situ atomic force microscopy (AFM). It was found that in addition to phase separation, the blend component preferentially diffused to and aggregated at the surface of the blend film, leading to the variation of surface composition with temperature. At 185 degrees C, above the critical temperature, the amounts of PMMA and SAN phases were comparable.
Resumo:
The crystallization behaviors and morphology of asymmetric crystalline-crystalline diblock copolymers poly(ethylene oxide-lactide) (PEO-b-PLLA) were investigated using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and microscopic techniques (polarized optical microscopy (POM) and atomic force microscopy (AFM)). Both blocks of PEO5-b-PLLA(16) can be crystallized, which was confirmed by WAXD, while PEO block in PEO5-b-PLLA(30) is difficult to crystallize because of the confinement induced by the high glass transition temperature and crystallization of PLLA block with the microphase separation of the block copolymer.
Resumo:
The effects of processing conditions on film morphology and molecular orientation were studied for a novel conjugated fluorene-bithiophene oligomer, oligo(9,9-dioctylfluorene-alt-bithiophene) (OF8T2). Depending on the method of film preparation, OF8T2 molecules adopt different orientations in the films. X-ray diffraction peak at 4.9 degrees of the OF8T2 film deposited from petroleum ether/dichloromethane mixture is attributed to a layering distance between sheets of OF8T2 chains, which are separated by the octyl side chains. Preferred orientation is clearly inferred through the absence of peaks corresponding to pi-pi stacking.
Resumo:
The morphologies and structures for the thin film of blend systems consisting of two asymmetric polystyrene-block-polybutadiene (SB) diblock copolymers induced by annealing in the vapor of different solvents, namely, cyclohexane, benzene, and heptane, which have different selectivity or preferential affinity for a certain block, were investigated by tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM). The results revealed that even a slight preferential affinity of good solvent for one block would strongly alter the morphology of the blend thin film.
Resumo:
The formation of ring-shaped structures in an H-shaped block copolymer [a poly(ethylene glycol) backbone with polystyrene branches, i.e., (PS)(2)PEG(PS)(2)] thin film was investigated when it was annealed in saturated PEG-selective acetonitrile vapor. Our results clearly indicate that ring formation is determined by the initial morphology of the spin-coated film, the solvent vapor selectivity and the environmental temperature of the solvent-annealing process. Only the films with the initial core-shell cylindrical structure in strongly PEG-selective acetonitrile vapor could form the ring-shaped structures.
Resumo:
Poly (3-butylthiophene) (P3BT) is a much less studied conjugated polymer despite its high crystallizability and thus excellent electrical property. In this work, morphology of P3BT at different crystalline polymorphs and solvent/thermal induced phase transition between form I and U modifications have been intensively investigated by using optical microscopy, electron microscopy, differential scanning calorimetry, and X-ray diffraction. It is shown that a direct deposition from carbon disulfide (CS2) at fast evaporation results in P3BT crystals in form I modification, giving typical whiskerlike morphology. In contrast, low evaporation rate from CS, leads to formation of form II crystals with spherulitic morphology, which is so far scarcely observed in polythiophene.
Resumo:
We demonstrate a strikingly novel morphology of high-density polyethylene (HDPE) crystal obtained upon melt crystallization of spin-coated thin film. This crystal gives windmill-like morphology which contains a number of petals. A detailed inspection on this morphology reveals that each petal is actually composed of terrace-stacked PE lamellae, in which the polymer chains within crystallographic a-c planes adopt similar to 45 degrees tilting around b-axis. The surrounding domains associated with a petal of the windmill composed of twisted lamellar overgrowths with an identical orientation of their long axis, which is the crystallographic b-axis shared by the petal and its corresponding twisted lamellar overgrowths.
Resumo:
PCBM (a C-60 derivative) is so far the most successful electron acceptor for bulk-heterojunction polymer photovoltaic (PV) cells. Here we present a novel method epitaxy-assisted creation of PCBM nanocrystals and their homogeneous distribution in the matrix using freshly cleaved mica sheet as the substrate. The highly matched epitaxy relationship between the unit cell of PCBM crystal and crystallographic (001) surface of mica induces abundant PCBM nuclei, which subsequently develop into nanoscale crystals with homogeneous dispersion in the composite film.
Resumo:
Different morphologies of Ag2S nano- and micro-materials, including spokewise micrometer bars, microfibers, nanowires, worm-like nanoparticles and nanopolyhedrons have been obtained controllably by a facile one-step method at room temperature. Powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and scanning electron microscope (SEM) were employed to characterize the structure and compositions of those nanomaterials. Furthermore, ultraviolet visible (UV-vis) spectra of Ag2S with different morphologies show different spectral features.
Resumo:
We realized write-once-read-many-times (WORM) memory devices based on pentacene and demonstrated that the morphology control of the vacuum deposited pentacene thin film is greatly important for achieving the unique nonvolatile memory properties. The resulted memory devices show a high ON/OFF current ratio (10(4)), long retention time (over 12 h), and good storage stability (over 240 h). The reduction of the barrier height caused by a large interface dipole and the damage of the interface dipole under a critical bias voltage have been used to explain the transition processes.
Resumo:
Nanostructured PbS with different morphologies and particle sizes have been prepared through a polyol process. Narrow size distribution for star-shaped, octahedral, tetradecanehedral, and cubic products were achieved by slowly introducing the source materials using a peristaltic pump in the presence of poly(vinylpyrrolidone) (PVP) as additive. Systematic variation of the kinetic factors, including the additive, the reaction temperature, the duration time, the ratio of source materials, the Sulfur sources, and the Pb(Ac)(2)center dot 3H(2)O concentration, reveals that the morphology depends mainly on the supersaturation degree of the free sulfur ions released from thiourea under elevated temperature.
Resumo:
Compatibilized blends of poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) were developed using maleated PVDF (PVDF-g-MA). Excellent compatibilization between PVDF and TPU was demonstrated by theological, morphological, and mechanical measurements. The introduction of PVDF-g-MA into the PVDF/TPU blends caused an increase in viscosity and storage modulus. Much finer morphology was clearly observed by SEM. The tensile tests showed that the tensile strength and ultimate elongation achieved a significant improvement with addition of PVDF-g-MA.
Resumo:
Sphere NH4Y1.9Eu0.1F7 nanoparticles were successfully synthesized by a hydrothermal method at 180 degrees C for 10 h. SEM and TEM images show the particles are spheres and have lots of hollows in them. The mean particle size is about 60 nm. The shape and size of the particles can be controlled by changing temperature and time of reactants. The luminescent property of the sample indicates that strong emission peaks of the Eu3+ ions are located at about 589 and 612 mm.
Resumo:
By using a combinatorial screening method based on the self-consistent field theory (SCFT) for polymer systems, the micro-phase morphologies of the H-shaped (AC)B(CA) ternary block copolymer system are studied in three-dimensional (3D) space. By systematically varying the volume fractions of the components A, B, and C, six triangle phase diagrams of this H-shaped (AC)B(CA) ternary block copolymer system with equal interaction energies among the three components are constructed from the weaker segregation regime to the strong segregation regime, In this study, thirteen 3D micro-phase morphologies for this H-shaped ternary block copolymer system are identified to be stable and seven 3D microphase morphologies are found to be metastable.