540 resultados para BIPYRIDINE COPOLYMERS
Resumo:
The microphase separation, glass transition and crystallization of two series of tetrahydrofuran-methyl methacrylate diblock copolymers (PTHF-b-PMMA), one with a given PTHF block of M(n) = 5100 and the other with a given PTHF block of (M) over bar(n) = 7000, were studied in this present work. In the case of solution-cast materials, the microphase separation of the copolymer takes place first, with crystallization then gradually starting in the formed PTHF microphase. The T-g of the PMMA microphase shows a strong dependence on the molecular weight of the PMMA block, while the T-g of the PTHF microphase shows a strong dependence on the copolymer composition. The non-isothermal crystallization temperature (T-c) of the diblock copolymer decreases rapidly and continuously with the increase in the amorphous PMMA weight fraction; the lowest T-c of the copolymer is ca. 35 K lower than the T-c of the PTHF homopolymer. There also exists a T-c dependence on the molecular weight of the PTHF block. In addition, when the major component of the copolymer is PMMA, a strong dependence of the crystallizability of the copolymer on the molecular weight of the PTHF block is observed; the higher the molecular weight, then the stronger its crystallizability. The melting temperature of the block copolymer is dependent on the copolymer composition and the molecular weight of its crystallizable block. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Radical copolymerisations of di-iso-propyl fumarate (DiPF) with di-n-propyl fumarate (DnPF), di-n-butyl fumarate (DnBF), di-n-amyl-fumarate (DnAF), di-n-heptyl fumarate (DnHF) and di-ethyl-hexyl fumarate (DEHF) were studied. The reactivity ratios for the following monomer pairs, DiPF/DnPF, DiPF/DnBF, DiPF/DnAF, DiPF/DnHF and DiPF/DEHF, were determined. The structures of the copolymers were examined by H-1-NMR and WAXD. Some properties of the copolymers were examined.
Resumo:
The permeability coefficients of a series of copolymers of vinylidene chloride (VDC) with methyl acrylate (MA), butyl acrylate (BA) or vinyl chloride (VC) (as comonomer) to oxygen and carbon dioxide have been measured at 1.0 MPa and 30 degrees C, while those to water vapor have been measured at 30 degrees C and 100% relative humidity. All the copolymers are semicrystalline. VDC/MA copolymers have lower melting temperature compared with VDC/BA copolymers, while that melting temperature of VDC/VC copolymer is higher than that of VDC/acrylate copolymers with the same VDC content. The barrier property of the copolymers is predominantly controlled by crystallite, free volume fraction, and cohesive energy. The permeability coefficients of VDC/MA copolymers to oxygen, carbon dioxide, and water vapor were successfully correlated with the ratio of free volume to cohesive energy.
Resumo:
On the basis of DSC measurements, the Delta H-f(0) values of the fusion heat for PEEKK-PEBEKK copolymers with various biphenyl contents were obtained by using thermodynamics statistical theory proposed by Flory and graphical method of the specific volume-fusion heat. The results reveal that Delta H-f(0) values determined by these two methods for PEEKK-PEBEKK copolymers with various biphenyl content are nearly the same, and that Delta H-f(0) values are closely dependent on biphenyl content. Delta H-f(0) value is minimum at n(B)=0.35.
Resumo:
The miscibility and phase behavior of polysulfone (PSF) and poly(hydroxyether of bisphenol A) (phenoxy) with a series of copoly(ether ether ketone) (COPEEK), a random copolymer of poly(ether ether ketone) (PEEK), and phenolphthalein poly(ether ether ketone) (PEK-C) was studied using differential scanning calorimetry. A COPEEK copolymer containing 6 mol % ether ether ketone (EEK) repeat units is miscible with PSF, whereas copolymers containing 12 mol % EEK and more are not. COPEEK copolymers containing 6 and 12 mol % EEK are completely miscible with phenoxy, but those containing 24 mol % EEK and more are immiscible with phenoxy. Moreover, a copolymer containing 17 mol % EEK is partially miscible with phenoxy; the blends show two transitions in the midcomposition region and single transitions at either extreme. Two T(g)s were observed for the 50/50 blend of phenoxy with the copolymer containing 17 mol % EEK, whereas a single composition-dependent T-g appeared for all the other compositions. An FTIR study revealed that there exist hydrogen-bonding interactions between phenoxy and the copolymers. The strengths of the hydrogen-bonding interactions in the blends of the COPEEK copolymers containing 6 and 12 mol % EEK are the same as that in the phenoxy/PEK-C blend. However, for the blends of copolymers containing 17, 24, and 28 mol % EEK, the hydrogen-bonding interactions become increasingly unfavorable and the self-association of the hydroxyl groups of phenoxy is preferable as the content of EEK units in the copolymer increases. The observed miscibility was interpreted qualitatively in terms of the mean-field approach. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The gold electrodes modified with 2-picolinic acid , nicotinic acid, iso-nicotinic or thiophene were prepared using membrane transfer method, The electrochemistry of di-mu-oxodimanganese 2,2'-bipyridine complex was studied in the acetic acid buffer solution at different modified gold electrodes, It was found that the modifiers which can promote the electrochemical reaction of the complex should be of at least two functional groups, One group can be bound to the electrode surface and the other can form electron transfer pathway between the modifier and the complex through sal; bridge or hydrogen bond, In addition, the mechanism of the electrochemical reaction was discussed.
Resumo:
Structures of poly(ether ether ketone ketone)-poly(ether biphenyl ether ketone ketone) copolymers were studied by using small angle X-ray scattering and the one-dimensional electron density correlation function method. The results revealed that structures of the aggregated state of the copolymers depend closely on the biphenyl content (n(b)). When n(b) = 0.35, invariant Q, long period L, average thickness of crystal lamellae (d) over bar, electron density difference eta(c) - eta(a) and degree of crystallinity W-c,W-x assume minimum values.
Resumo:
The theoretical model[17] of an ultramicroelectrode modified with a redox species film is used as the diagnostic tool to characterize the catalytic oxidation of ascorbic acid at carbon fiber ultramicrodisk electrodes coated with an Eastman-AQ-Os(bpy)(3)(2+) film. The electrocatalytic behavior of ascorbic acid at the ultramicroelectrode modified by an Eastman-AQ polymer containing tris(2,2'-bipyridine) osmium(III/II) as mediators is described. In order to determine the five characteristic currents quantitatively, the radius of the ultramicroelectrode and the concentration of ascorbic acid are varied systematically. The kinetic zone diagram has been used to study the electrocatalytic system. This system with 0.5-2.75 mM ascorbic acid belongs to SR + E case, and the concentration profiles of the catalyst in the film are given in detail. Finally, optimizing the design of catalytic system is discussed.
Resumo:
Block copolymers of poly(ethersulphone) (PES) oligomers with liquid crystalline polyester units were synthesized by the reaction of dihydroxy-terminated poly(ether sulphone) oligomers (number-average molecular weights: 704, 1,158 and 2570) and terephthaloyl bis(4-oxybenzoyl chloride), and their properties were investigated. The results indicated that the copolymer with PES segments of molecular weight of 704 possessed birefringent features when annealed at 360 degrees C, while the copolymer with PES segments of molecular weight of 2,570 became isotropic. Also, the block copolymers had a better chemical resistance and high-temperature stability than PES.
Resumo:
The compatibilization of high density polyethylene (HDPE)/polyisoprene (PI) blends with polyethylene/polyisoprene (PE/PI) ''thread-through'' copolymers was investigated. The proliferating structure of PE/PI with segments chemically identical to HDPE and PI, respectively, is different from that of graft copolymers. Studies showed that the dispersed domain size in the blends was significantly reduced and interfacial adhesion was improved by the compatibilization action of the copolymer. In the differential scanning calorimetry (DSC) analysis, the crystallization peak of HDPE in the blends became broad with adding the copolymer and fractionated crystallization appeared in the HDPE/PI blend compatibilized with the copolymer at a weight ratio of 30/70 while it appeared in the blend without copolymer at a weight ratio of 20/80. DMA results showed that by adding the copolymer, both the glass transition temperature (T-g) of the PI component and the alpha-relaxation of HDPE shifted to lower temperature, demonstrating the enhanced penetration of the two components. Mechanical properties of the blends were improved, especially the elongation at break, by the presence of the copolymers. The characteristic yielding at the fractured surface of the blends compatibilized with the copolymer indicates the fractural behavior of the material changed from brittle to tough.
Resumo:
An azo-group containing polybutadiene macroinitiator was prepared by Pinner synthesis and characterized by IR, NMR, GPC, viscosity and elemental measurements. The macroinitiator was further use to polymerize acrylamide (AAm) in benzene to form polybutadiene/polyacrylamide (PBD/PAAm) block copolymers. High conversion of AAm was obtained over a wide range of monomer/macroinitiator ratios. The PBD/PAAm block copolymers were found to have excellent solvent resistance.
Resumo:
A set of AM-AA copolymer samples with the same comonomer content and different average molecular weight have been characterized by C-13 NMB and light scattering methods in this paper. The chemical composition (comonomer AA, mole content 16.9 +/- 1.1%) of these samples is uniform. the sequence of AA in the macromolecular chain is of alone and random distribution and the light scattering theory from polyelectrolyte in added-salt solutions is suitable for the AM-AA copolymers-0.12 mol/L NaCl water systems. The actual values of M(w), the second Virial coefficient A(2) and the mean square radius of gyration (R(2)), for the studied samples have been obtained. The relationships between the molecular parameters are as follows: A(2)=0.0619 ($) over bar M(w)(-0.24), < R(2) >(1/2)(t)= 0.0210 ($) over bar M(w)(0.54).
Resumo:
The anti-aging performance of blends of polystyrene (PS), styrene-butadiene triblock copolymers (SBS), and PS/styrene-butadiene (SB)-4A (Carm star SE block copolymer) has been studied by means of C-13 NMR techniques. It is found that the anti-aging performance of these kinds of blends largely depends on their miscibility with PS of different molecular weight M(PS). The larger the quantities of PS solubilized in polybutadiene (PBD) domains, the better the anti-aging performance of the blends. It is also found that the anti-aging performance of these blends has dependence on molecular architectures of the SE block copolymers. For the aged blends, the double bonds of PBD were broken, meanwhile serious cross-linking networks formed in the blends. The proposed anti-aging mechanism is that the PS solubilized in PBD domains can efficiently prevent oxygen molecules from diffusing into PBD domains, therefore, successfully stop the oxidative process of PBD.
Resumo:
The miscibilities of blends of homopolystyrene/styrene-butadiene/styrene (PS/SBS) and PS/SB-4A (4-arm star block copolymer) have been studied by dynamic mechanical analysis (DMA) and C-13 CPMAS NMR techniques. The results indicate that the miscibilities o
Resumo:
The microstructures of styrene-butadiene triblock (SBS) and styrene-butadiene four-arm star block (SB-4A) copolymers and their blends with homopolystyrene (PS) of different molecular weights, MPS, have been investigated by means of small-angle X-ray scatt