164 resultados para Arsenic mineralization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable nitrogen isotope signatures of major sources of mineral nitrogen ( mineralization of soil organic nitrogen, biological N-2 fixation by legumes, annual precipitation and plant litter decomposition) were measured to relatively define their individual contribution to grass assimilation at the Haibei Alpine Meadow Ecosystem, Qinghai, China. The results indicated that delta N-15 values (- 2.40 parts per thousand to 0.97 parts per thousand) of all grasses were much lower than those of soil organic matter (3.4 +/- 0.18 parts per thousand) and mineral nitrogen ( ammonium and nitrate together,7.8 +/- 0.57 parts per thousand). Based on the patterns of stable nitrogen isotopes, soil organic matter (3.4 +/- 0.18 parts per thousand), biological N-2 fixation (0 parts per thousand), and precipitation (- 6.34 +/- 0.24 parts per thousand) only contributed to a small fraction of nitrogen requirements of grasses, but plant litter decomposition (- 1.31 +/- 1.01 parts per thousand) accounted for 67%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sandstone-type uranium deposits are frequently found close to oil fields or uraniferous sandstones contain bitumen or petroleum. However, few evidence has been presented to indicate the association of uranium mineralization with petroleum oxidation. Thus, Dongsheng uranium deposit in Ordos Basin and Qianjiadian deposit in Kailu Basin are taken for examples to solve the puzzle. Integration data from sedimentary petrology, mineralogy, race elements geochemistry, isotope geochemistry and organic geochemistry, the uranium and petroleum sources, and diagenetic paragenesis of the host sandstone are analyzed, and then the genetic relationship between microbes, petroleum and uranium deposits are discussed. The observation under microscope shows that the host sandstone samples from Middle Jurassic Zhiluo Formation in the Dongsheng deposit contained different kinds of metamorphic rock fragments, which should have been derived form outcrops north to this basin. The LREE/HREE ratios of gneiss and amphibolite sampled from outcrops were close to the highest and the lowest LREE/HREE ratios of the sandstones with well-compared chondrite-normalized REE patterns, respectively. So these results consistently indicated that parent rocks of sandstones were mainly contributed from these two kinds of metamorphic rocks. There was very high Th/U ratio for granite gneiss, which was a mainly potential U resource. Hydrocarbon inclusions and adsorbed hydrocarbons are observed under fluorescence microscope in the host sandstone of Dongsheng uranium deposit, suggesting that the sandstones may have been utilized as oil migration pathways. Based on biomarker parameters, it is indicated that the inclusion oils and adsorbed hydrocarbons were marginally mature to mature, and were derived from humic-sapropel type organic matter under poor reducing freshwater to semi-saline environment. The features are similar to those of organic matter extracted from Triassic sandstone and source rock, but are different from that of cretaceous sandstone. Thus, it can be concluded that the inclusion oils and adsorbed hydrocarbons were mainly derived from Triassic lacustrine facies source rock. Observation results under Scanning Electron Microscopy and Electron Microprobe with Energy Spectrum Analysis show that, in Dongsheng area, the main uranium ore mineral is coffinite. The coffinite is intimately intergrown or coexists with pyrite and calcite, thus, the solution during mineralization stage is inferred to be alkaline. The alkaline environment is not favored for uranium to be pre-concentrated by absorption, and then be reduced abiogenetically. δ34S of pyrite and δ13C of calcite indicate that pyrite was formed by bacterial sulfate reduction (BSR) and part of the carbon of calcite has been dirived from oxidation of petroleum, respectively. Additionally, petroleum is found biodegraded. All the lines of evidence consistently indicate that petroleum was involved in uranium mineralization. Coffinite with microbe-like structures is found in the high U sandstone samples and is composed of nanoparticles, indicating the coffinite is biogenic. The conclusion are also supportted by laboratory experiment studies, which have shown that SRB are capable of utilizing U(VI) as the preferred electron acceptor for respiration and reduce U(VI) to U(IV) directly, coupled the oxidaton of organic matter and sulfate reduction. Based on the research results mentioned above, in the Dongsheng area, coffinite is likely to have formed by mixing of brine containing petroleum derived from Triassic with uranium-bearing meteoric water from outcrops north to Ordos Basin. SRB utilize hydrocarbon as carbon source, and directly reduce U(VI) resulting in precipitation of coffinite. The product of metabolism, H2S and CO2, was precipitated as pyrite and calcite during mineralization stage. Petroleum in fluid inclusions and adsorbed type in host sandstone from Lower Cretaceous Yaojia Formation in Qianjiadian uranium deposit, Kailu Basin, are derived from Jurassic Jiufotang Formation in this basin and the uranium mineral consists mainly of pitchblende. The δ34S and δ13C values of pyrite and calcite during mineralization stage indicate SRB have likely degraded petroleum, which is similar to that of Dongsheng deposit. The alkaline environment as indicated by the diagenetic mineral assemblage calcite, Fe dolomite, pyrite and pitchblende deposit suggests that U ore in the Qiangjiajiadian has a similar origin, i.e., direct reduction by SRB. However, less part of pitchblende is intergrown with kaolinite, suggesting the solution during mineralization stage is acidic. The environment is favorable for U(VI) to be adsorded on quartz or other mineral, and then reduced by H2S produced by SRB. Thus, it can be concluded that U(VI) reduction with petroleum oxidation by SRB and other microbes is an important ore-forming mechanism in petroleum-related sandstone-type uranium deposits. The finding is significant in that it provides a theoretical basis for exploration of both uranium and petroleumr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Located in the Paleozoic uplift along the southern margin of Tu-Ha basin in eastern Xinjiang, the newly discovered Hongshan Cu-Au deposit occurs in the superimposed Mesozoic volcanic basin upon the north section of later Paleozoic Dananhu-Tousuquan accretionary arc. Kalatage Cu-Au orebelt is controlled by NWW-trend faults, and includes Hongshan and Meiling Cu-Au deposits. The host rocks of Hongshan ore district are mainly rhyolitic-dacitic ignimbrites, whereas Cu-Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and granitic porphyry. Mineralization styles are dominantly veinlet-disseminated and veinlet, occasionally stockwork. The mineral association is chalcopyrite, pyrite, bornite, chalcocite and sphalerite. The hydrothermal alteration consists of silicfication, sericitization, alunitization, pyrophylitization, illitization, hydromuscovitization, and chloritization. Hongshan Cu-Au deposit, on the edge of the desert, is one of the driest areas in eastrn Tianshan. Moreover, the highest temperature has been up to 60℃, and the average rainfall receives only 34.1mm/y. The light rainfall and rapid evaporation in the vicinity of this deposit have allowed the formation of a great variety of water-soluble sulfates. Oxidization zone of this deposit lies on the upper part of primary sulfide orebodies appearing with a depth of 50-60m, which is dominant in sulfate minerals. 1. Based on the field observation, the volcanic and sub-volcanic rock composition, hydrothermal alteration, ore structure and mineralization characteristics, this paper proposed that the Hongshan Cu-Au deposit belongs to a transitional type from high-sulfide epithermal to porphyry Cu-Au deposit, which corresponds with the typical HS-epithermal deposit such as Zijinshan Au-Cu deposit in Fujian Province, SE-China. 2. The Hongshan copper-gold deposit was controlled by the tectonic, stratum, magma activity and volcanic apparatus, whereas Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and fine grained pyritization in hydrothermal activity, and Cu mineralization is closely related to quartz porphyry and hydrothermal explosive breccia. 3. Oxidation zone of Hongshan Cu-Au deposit lies on the upper part of primary sulfide orebodies deposit. 23 sulfate minerals were identified in this work. The results of samples XRD and chemical analysis were furthermore confirmed through thermal, infrared spectrum and mössbauer spectrum analysis. Among those, nine minerals as Ferricopiapite, Cuprocopiapite, Rhomboclase, Parabutlerite, Krausite, Yavapaiite, Metasideronatrite Kroehnkite and Paracoquimbite were founded in China for the first time. And Paracoquimbite was secondly reported in the world (first case reported at 1938 in Chile). 4. EPMA analysis shows that Al impurity in crystal lattice is important to polytype formation of paracoquimbite and coquimbite besides stack fault. 5. Compared with Meiling Cu-Au deposit in the same Kalatage ore belt from the characteristics of δ34S of barite, lithofacies, hydrothermal alteration and homogeneous temperature, Hongshan Cu-Au deposit belongs to the same metallogenic system of HS-epithermal type as Meiling Cu-Au deposit. But Hongshan Cu-Au deposit has less extensive alteration and shallower denudation. 6. Sulfur isotope analyses show that δ34S values of pyrites vary in the range of +1.86‰~+5.69‰, with an average of 3.70‰, mostly in the range of +1.86‰~+3.20‰, and δ34Scp<δ34Spy. Therefore ore-forming fluid of porphyry comes from mantle and was contaminated by the earth’s crust. Sulfur isotope has reached balance in ore-forming process. 7. Sulfur isotope analyses show that δ34S values of sulfates vary in the range of +2.15‰~+6.73‰, with an average of +3.74‰, mostly equals as δ34S values of primary sulfides in Hongshan Cu-Au deposit. So supergene sulfates inherit sulfur of primary sulfide. δ34S values are mostly same in different sulfates. As well as pyrite and chalcopyrite, volcanic hot spring and associated native sulfur underground also provide water medium and sulfur during the formation process of sulfate. 8. According to the EPMA of sample chalcopyrite and pyrite in Hongshan Cu-Au, the value of Cu/Ni is 0.98-34.72, mostly close to the value of 5, which shows that Hongshan deposit is a typical volcanogenic magmaic hypothermal deposit. Au and Ag, Zn, Te and Bi are positive correlation, Cu and Hg, Se, Sb are positive correlation, indicates Au and Cu don’t locate in the factor of mineralization of same mineralization groups. The reasons of gold concentration in the oxidation zone are: 1). Change of redox potential (Eh) makes gold to deposit from the liquid of mineralization zone; 2). PH is one of the most factors of gold’s deposition; 3). Soluble complex and colloid of gold can be adsorbed easily. 9. The biotite and hornblende K-Ar isotopic ages from the wall rock-quartz diorite, biotite granite and monzonite granite are 231.99±3.45Ma, 237.97±2.36Ma and 296.53±6.69Ma respectively. The ore-bearing rhyolitic breccia lava contains breccia of the biotite granite which indicates the volcanism and related Cu-Au mineralization occurred later than the granite, possibly in Mesozoic. K-Ar ages of granitoids in Sanya, Baishiquan and Hongliugou area and Molybdenite Re-Os age of Baishan Mo deposit all are in Triassic. Besides late Paleozoic magmatism, igneous magmatic event of Mesozoic was widespread in eastern Tianshan. 10. The K-Ar age dating indicates that the K-Ar age of Voltaite occurred below surface 1m is 56.02±3.98Ma, K-Ar age of Ferricopiapite occurred below surface 1.5m is 8.62±1.12Ma, K-Ar age of Yavapaiite occurred below surface 14 m is 4.07±0.39Ma, and K-Ar age of Voltaite occurred below surface 10 m is 14.73±1.73Ma. So the age interval of oxidation zone of Hongshan copper-golden bed is between 60 -3.38Ma. Oxidization occurred at Caenozoic era (from 65Ma), which can be identified through comparing with different deposits oxidation zone in other countries. The coupling between global tectonic event and climatic change event which occur from Caenozoic era has some effect on epigeosphere system, which can act on the surface of bed oxidation zone similarly. It induces that the age mentioned above coincide with collision of India-Asia and multistage uplifting of Qinhai-Tibet Plateau happened subsequently. Bed oxidation zone is the effect and record of collision and uplifting of Tibet Plateau. The strong chemical weathering of surface accumulation to which was leaded by PETM event occurred Paleocene and Eocene is the reason of Voltaite sharply rises. On the contrary, Ferricopiapite formed due to the global cold weather. The predecessor did much research through biota, isotopes, susceptibility, but this paper try to use different sulfate mineral instead of climatic change. So the research of sulfate minerals not only indicates a great deal of oxidized zone feature, but also the intergrowth of sulfate minerals may be used to trace paleoenviroment and paleoclimate of oxidation zone. 11. Analysis of the information of alteration and mineralization features of four bore cores, induced activity polarization well logging and Eh-4 geophysical section, deep mineralization anomaly objects of Hongshan ore districts shows low resistance, middle and high polarization, measurements of Eh-4 consecutive conductance section show the existing of concealed porphyry ore body deeper than 450m, on the top of and around rock body there are low resistance body ranged from 100-300Ω•m, this area may be the ore-bearing part. In a word, Hongshan Cu-Au deposit deposit is a combine of upper HS-style epithermal Au deposit and deeper porphyry mineralization system. It has great potential to find large HS-style epithermal-porphyry Au-Cu deposits. This paper consists of seven chapters and twenty seven sections. The geological character of deposit is basic condition in this work. Constitute of oxidation zone, research of sulfate mineral, relation between oxidation and primary zone, K-Ar ages of potassic sulfate are key parts of thesis. Genesis of ore deposit is the further expansion of this research. Analysis of ore-controlling factors is the penetration above basic. Analysis of potential is application of exploration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayan Obo giant REE-Nb-Fe deposit in the northen margin of the North China Craton (NCC) is well known in the world for its abundant rare earth element resources. There is nearly one hundred year of studying history in substance component, chronology and geochemistry of the ore deposit, since the main ore body was found in 1927. However, there still exist remarkable divergences in genesis, mineralized age and material origin. Especially the REE enrichment mechanism leaves us a secret. Recent research shows that the Bayan Obo ore deposit likely resulted from the carbonatite magma activity, which is a favorable factor for REE accumulation. Based on the analysis of tectonic evolution history of north margin of NCC this thesis mainly discussed the formation background of cratonic margined rifts in Bayan Obo, and presented the analytical results of formation environment, intrusion age and deep origin of Proterozoic carbonatite magma. These research results can provide evidence for ore genesis. LA ICP-MS U-Pb dating on zircon shows that the Neoarchean basement was mainly composed of calc-alkaline TTG gneisses (2588±16Ma). The collision orogeny movement of the northen margin of the NCC between 2.0 Ga to 1.9 Ga brought the swarm of diorite-granodiotite magma (2023±16Ma) and intense regional metamorphism event (1906.3±7.7 Ma to 1892.7±6.7 Ma). In the sequent super continent break up background, intense metamorphic and deformed basement complex was uplifted to the surface suffered denudation, forming Mesoproterozoic Bayan Obo group in the contemporary continental margin rifts. The uplift of basement complex and formation of continental rifts were likely related with mantle plume activity. Evidence from petrological and geochemical data suggests that abundant alkaline-basic magma resulted from enhancement of continental breakup activity, that separated into carbonatite veins and mafic dykes by melt immiscibility mechanism, intruded in Bayan Obo margin rifts at the late stage of extension movement. Carbonatite veins can be divided into three main types by mineral composition: dolomite carbonatite, dolomite-calcite coexistent carbonatite and calcite carbonatite. Intrusion relationship between different types of carbonatite veins show that the calcite carbonatite veins were formed latter than the dolomite type as well as the coexistent type. Moreover, geochemical data also reveals successive and evolutive character between them. The content of REE increases together with the calcite minerals component. That is to say that REE gradually accumulated as the evolution of carbonatite magma. High precision Sm-Nd isochron data shows that the intrusion age of carbonatite veins was at 1319±48Ma. Moreover, the REE mineralization age in calcite carbonatite veins was around 1275±87Ma that is consistent with the intrusion age in error range. According to these data the abundant REE already existed in the carbonatite magma before intrusion and result in the earlier ore mineralization. The average age of mineralized dolomite was at 1353±100Ma, and the mineralization age of apatite in coarse grain dolomite was around 1329±150Ma. These data is consistent with carbonatite. Considering the coincident rare, trace element and isochron composition between them, it is presumed that mineralized dolomite was also the carbonatite intrusion and was the mainly factor for huge REE enrichment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayan Obo REE-Nb-Fe ore deposit is the largest REE deposit in the world. Owing to its unique type and tremendous economic value, this deposit has widely attracted interests from geological researchers and vast amount of scientific data have been accumulated. However, its genesis, especially ore-forming age and REE sources, have been under dispute for a long time. On the basis of previous research works, this paper mainly conducts studies on the Early Paleozoic ore-forming event in the Bayan Obo deposit. The following results and conclusions can be suggested: Sm-Nd isotopic analytical results of bastnaesite, beloeilite, albite and fluorite samples from a coarse-crystalline ore lode present an isochron age of 436±35Ma. Besides, Rb-Sr isotope dating of the coarse-crystalline biotite lode that intruded into banded ores gives an isochron age of 459±39Ma. The two ages verify the exist of Early Paleozoic ore-forming event at Bayan Obo, which characterized by extensive netted mineralization of REE fluorocarbonates, aeschynite and monazite, accompanied by widely fluorite-riebeckite-aegirine-apatite alteration. Sr-Nd isotope composition of vein minerals is located between EMI and ancient lower crust component in the ISr(t)-εNd(t) correlation diagram, indicating that there is a crustal contamination during veined mineralization. A large area late Paleozoic granitoids are distributed in the southeast region of east open pit of the mine. The granitoids intruded directly into the ore-bearing dolomite, and produced intense skarnization. Moreover, at 650-660m of the drill core on 22 line and 1598m level flat in the south of East Open Pit, we firstly found skarnization rocks. Single grain and low background Rb-Sr isochrone dating on phlogopite in skarn gives 309±12Ma. Considering the intruded contacting relationship, the late Paleozoic granitoids, already extended to the under part of REE ore bodies, must be posterior to the latest intense REE mineralization, and is only a destructive tectonic and magmatic activity. Fluid inclusion types of fluorite in the Bayan Obo deposit consist of multiphase daughter mineral-bearing inclusion, two or three phase CO2-bearing inclusion and two phase aqueous inclusion. Petrography, laser Raman analysis and microthermometry study indicate that the fluids involving in REE-Nb-Fe mineralization at Bayan Obo might be mainly of H2O-CO2-NaCl-(F-REE) system. The presence of REE-carbonate as a daughter mineral in fluid inclusions shows that the original ore-forming fluids are rich in REE elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the Xiaodonggou porphyry molybdenum deposit located in the Xarmoron molybdenum metallogenic belt is chose as the research area. We have analyzed the petrology of the Xiaodonggou pluton in detail and made chemical analysis of the major and trace elements, Rb-Sr and Sm-Nd isotope, common lead isotope and SHRIMP zircon U-Pb dating et al; in the other hand, we use the molybdenite to make common lead analysis and Re-Os isotopic dating. The Xiaodonggou pluton is rich in silicon, potass, zirconium, and low in REE. In addition, it has no minus Eu abnormity and show a isotopic composition high in εNd(t) and low in Sri, indicating its magma origining from the melting of juvenile thicken lower crust. In the meanwhile, it contained the features of high temperature, quick melting, quick segregation and quick emplacement. The common lead analysis of the pluton orthoclase and molybdenite show that the former transfer from orogen to mantle and the latter come from mantle, which is consistent to the molybdenite sulfur isotopic and quartz oxygen isotopic composition, demonstrating that the rock and ore-forming materials of deposit having different sources, magma from the lower crust mixing with mantle fluid. In plus, we use the physical experiments results of the water-magma reaction to explain the interaction of magma and mantle fluid. In the deep crust, these two systems uplifted in a immiscible state; when they reached low depth, the stream film between fluid-magma collapsed, and the magma was broken into small agglomerates by the fluid, then they mixed thoroughly. The SHRIMP zircon U-Pb dating gave a result of 142±2Ma and the molybdenite Re-Os dating result is 138.1±2.8Ma, corresponding to the big tectonic transition period of 140Ma, when the major stress field changing from south and north to west and east. At this time, the Da Hinggan ling ranges area was under an extensive background, underplating proceeded and mantle materials could add into the magmas forming in the lower crust. So, from the above analysis, we propose the following model for the Xiaodonggou porphyry molybdenum deposit: in the early Cretaceous period, the Da Hinggan ling ranges area was under a extensive background, the adding of mantle fluid containing ore materials into heated lower crust made it melting to produce magmas. Following more mantle fluid got into the magma room and urged the magma to segregate from the source quickly. The fluid and magma uplifted together, when they arrived at shallow depth, the fluid-magma became unstable and the latter was broken into many small agglomerates with fluid connecting them in the interspaces. Because of the H+, K+ and various elements existing in the fluid, it would reacted with the magma and the rock through alteration and ore minerals crystallized out, forming the Xiaodonggou porphyry deposit with disseminated mineralization phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Duobuza copper deposit, newly discovered typical gold-rich porphyry copper deposit with superlarge potential, is located in the Tiegelong Mesozoic tectonic -magmatic arc of the southern edge of Qiangtang block and the northern margin of Bangonghu-Nujiang suture. Quartz diorite porphyrite and grandiorite porphyry, occurred in stock, are the main ore-bearing porphyries. As the emplacement of porphyry stock, a wide range of hydrothermal alteration has developed. Within the framework of the ore district, abundant hydrothermal magnetite developed, and the relationship between precipitation of copper and gold and hydrothermal magnetite seems much close. Correspondingly, a series of veinlets and network veinlets occurred in all alteration zones. Therefore, systematic research on such a superlarge high-grade Duobuza gold-rich porphyry copper deposit can fully revealed the metallogenic characteristics of gold-rich porphyry copper deposits in this region, establish metallogenetic model and prospecting criteria, and has important practical significance on the promotion of regional exploration. In addition, this research on it can enrich metallogenic theory of strong oxidation magma-fluid to gold-rich porphyry copper deposit, and will be helpful to understand the metallogenic characteristics in early of subduction of Gangdese arc stages and its entire evolution history of the Qinghai-Tibet Plateau, the temporal and spatial distribution of ore deposits and their geodynamics settings. Northern ore body of Duobuza copper deposit have been controlled with width (north-south) about 100 ~ 400 m, length (east-west) about 1400 m, dip of 200 °, angle of dip 65 °~ 80 °. And controlled resource amount is of 2.7 million tons Cu with grade 0.94% and 13 tons Au with 0.21g/tAu. Overall features of ore body are large scale, higher grade copper, gold-rich. Ore occurred in the body of granodiotite porphyry and quartz diorite porphyrite and its contact zone with wall rock. Through the detailed mapping and field work studies, some typies of alteration are identificated as follows: albitization, biotititation, sericitization, silication, epidotization, chloritization, carbonatization, illitization, kaolinization and so on. The range of alteration is more than 10km2. Wall alteration zone can be divided into potassic alteration, moderate argillization alteration, argillization, illite-hydromuscovite or propylitization from ore-bearing porphyry center outwards, but phyllic alteration has not well developed and only sericite-quartz veins occurred in local area. Moreover, micro-fracture is development in ore district , and correspondingly a series of veinlets are development as follows: biotite vein (EB type), K-feldspar-biotite-chalcopyrite-quartz vein, magnetite-antinolite-K-feldspar vein, quartz-chalcopyrite-magnetite veins (A-type), quartz-magnetite-biotite-K-feldspar vein, chalcopyrite veinlets in potassic alteration zone; (2) chalcopyrite occurring in the center vein–quartz vein (B type), chalcopyrite veinlets, chalcopyrite-gypsum vein in intermediate argillization alteration; (3) chalcopyrite- pyrite-quartz vein, pyrite-quartz vein, chalcopyrite-gypsum veins, quartz-gypsum- molybdenite-chalcopyrite vein in argillization alteration; (4) gypsum veins, quartz-(molybdenite)-chalcopyrite vein, quartz-pyrite vein, gypsum- chalcopyrite vein, potassium feldspar veinlets, Carbonate veins, quartz-magnetite veins in the wall rock. In short, various veins are very abundant within the framework of the ore district. The results of electronic probe microscopy analysis (EMPA) indicate that Albite (Ab 91.5~99.7%) occurred along the rim of plagioclase phenocryst and fracture, and respresents the earliest stages of alteration. K-feldspar (Or 75.1~96.9%) altered plagioclase phenocryst and matrix or formed secondary potassium feldspar veinlets. Secondary biotite occurred mainly in phenocryst, matrix and veinlets, belong to magnesium-rich biotite formed under the conditions of high-oxidation magma- hydrothermal. Chloritization developed in all alteration zones and alterd iron- magnesium minerals such as biotite and hornblende and then formed chlorite veinlets. As the temperature rises, Si in the tetrahedral site of chlorite decreased, and chlorite component evolved from diabantite to ripiolite. The consistent 280℃~360℃ of formation temperature hinted that chlorite formed on the same temperature range in all alteration zones. However, formation temperature range of chlorite from the gypsum-carbonate-chlorite vein was 190℃~220℃, and it may be the product of the latest stage of hydrothermal activity. The closely relationship between biotite and rutile indicate that most of rutiles are precipitated in the process of biotite alteration and recrystallization. In addition, the V2O3 concentration of rutile from ore body in Duobuza gold-rich porphyry copper deposit is >0.4%, indicate that V concentration in rutile has important significance on marking main ore body of porphyry copper deposit. Apatites from Duobuza deposit all are F-rich. And apatite in the wall rock contained low MnO content and relatively high FeO content, which may due to the basaltic composition of the wall rocks. The MnO in apatite from altered porphyry show a strong positive correlation with FeO. In addition, Cl/F ratio of apatite from wall rock was highest, followed by the potassic alteration zone and potassic alteration zone overprinted by moderate argillization alteration was the lowest. SO2 in Apatite are in the scope of 0 to 0.66%, biotite in the apatite has the highest SO2, followed by the potassic alteration zone, potassic alteration zone overprinted by moderate argillization alteration, and the lowest in the surrounding rocks, which may be caused by the decrease of oxygen fugacity of hydrothermal fluid and S exhaust by sulfide precipitation in potassic alteration. Magnetite in the wall rock have higher Cr2O3 and lower Al2O3 features compared with altered porphyry, this may be due to basalt wall rock generally has high Cr content. And magnetites have higher TiO2 content in potassic alteration than moderate argillization alteration overprinted by potassic alteration, argillization and wall rock, suggested that its formation temperature in potassic alteration was the highest among them. The ore minerals mainly are chalcopyrite and bornite, and Au contents of chalcopyrite, bornite, and pyrite are similar with chalcopyrite slightly higher. The Eu* negative anomaly of disseminated chalcopyrite was relatively lower than chalcopyrite in veinlets. Within a drill hole, the Eu* negative anomaly of disseminated chalcopyrite was gradually larger from bottom to top. Magnetite has the same distribution model, with obvious negative Eu* abnormal, and ΣREE in great changes. The gypsum has the highest ΣREE content and the obvious negative anomaly, and biotite obviously has the Eu* abnormal. Based on the petrographic and geochemical characteristics, five series of magmatic rocks can be broadly classified; they are volcanic rocks of the normal island arc, high-Nb basaltic rocks, adakites, altered porphyry and diorite. The Sr, Nd, Hf isotopes and geochemistry of various series of magmatic rock show that they may be the result of mixing between basic magma and various degrees of acid magma coming from lower crust melted by high temperature basic underplating from partial melting of the subduction sediment melt metasomatic mantle wedge. Furthermore S isotope and Pb isotope of the sulfide, ore-bearing porphyries and volcanic rocks indicated ore-forming source is the mantle wedge metasomatied by subduction sediment melt. Oxygen fugacity of magma estimated by Fe2O3/FeO of whole rock and zircon Ce4+/Ce3+ indicated that the oxidation of basalt-andesitic rocks is higher than ore-forming porphyry, and might imply high-oxidation characteristics of underplated basic magma. Its high oxidative mechanism is likely mantle sources metasomatied by subduction sediment magma, including water and Fe3+. And such high oxidation of basaltic magma is conducive to the mantle of sulfides in the effective access to melt. And the An component of dark part within plagioclase phenocryst zoning belong to bytownite (An 74%), and its may be a result of magma composition changes refreshment by basaltic magma injection. SHRIMP zircon U-Pb and LA-ICP-MS zircon U-Pb geochronology study showed that the intrusions and volcanic rocks from Duobuza porphyry copper deposit belong to early Cretaceous magma series (126~105Ma). The magma evolution series are as follows: the earliest diorite and diorite porphyrite → ore-bearing porphyry and barren grandiorite porphyry →basaltic andesite → diorite porphyrite → andesite → basaltic andesite, and magma component shows a evolution trend from intermediate to intermediate-acid to basic. Based on the field evidences, the formation age of high-Nb basalt may be the latest. The Ar-Ar geochronology of altered secondary biotite, K-feldspar and sericite shows that the main mineralization lasting a interval of about 4 Ma, the duration limit of whole magma-hydrothermal evolution of about 6 Ma, and possibly such a long duration limit may result in the formation of Duobuza super-large copper deposit. Moreover, tectonic diagram and trace element geochemistry of volcanic rocks and diorite from Duobuza porphyry copper deposit confirm that it formed in a continental margin arc environment. Zircon U-Pb age of volcanic rocks and porphyry fall in the range of 105~121Ma, and Duobuza porphyry copper deposit locating in the north of the Bangonghu- Nujiang suture zone, suggested that Neo-Tethys ocean still subducted northward at least early Cretaceous, and its closure time should be later than 105 Ma. Three major inclusion types and ten subtypes are distinguished from quartz phenocrysts and various quartz veins. Vapor generally coexisting with brine inclusions, suggest that fluid boiling may be the main ore-forming mechanism. Raman spectrums of fluid inclusions display that the content of vapor and liquid inclusion mainly contain water, and vapor occasionally contain a little CO2. In addition, the component of liquid inclusions mainly include Cl-, SO42-, Na+, K+, a small amount of Ca2+, F-; and Cl- and Na+ show good correlation. Vapor mainly contains water, a small amount of CO2, CH4 and C2H6 and so on. The daughter minerals identified by Laman spectroscopy and SEM include gypsum, chalcopyrite, halite, sylvite, rutile, potassium feldspar, Fe-Mn-chloride and other minerals, and ore-forming fluid belong to a complex hydrothermal system containing H2O-NaCl-KClFeCl2CaCl2. H and O isotopic analysis of quartz phenocryst, vein quartz, magnetite, chlorite and gypsum from all alteration zones show that the ore-forming fluid of Duobuza gold-rich porphyry copper deposit consisted mainly of magmatic water, without addition of meteric water. Duobuza gold-rich porphyry copper deposit formed by the primary magmatic fluid (600-950C), which has high oxidation, ultra-high salinity and metallogenic element-rich, exsolution direct from the magma, and it is representative of the typical orthomagmatic end member of the porphyry continuum. Moreover, the fluid evolution model of Duobuza gold-rich porphyry copper deposit has been established. Furthermore, two key factors for formation of large Au-rich porphyry copper deposit have been summed up, which are ore-forming fluids earlier separated from magma and high oxidation magma-mineralization fluid system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation discusses current status of high temperature and high pressure and focuses on analyzing systematically the solubility of heavy metals in the silicate magma in HTHP experiments. The high temperature study on the content of heavy metal molybdenum in the silicate melts in this dissertation, which is granted, based on the geology mineralization model and the theory of HTHP experiments and combined with mineralization grade and geochemical nature of Mo, discusses the difference of mineralization between mantle plume and aqueous fluids and comes to the conclusions, which are as follows: (1) The content of Mo in the silicate melts is much greater than Mo mineralization grade. The molybdenum ore has the exploitation value when the industrial grade is higher than 0.06%. Mo content in different silicate melts varies because of the concentration of SiO2, that is, Mo content in the granodiorite is greater. (2) The content of Mo, which varies with reaction time, arises first and drops down in the alkali basalt melts, while variation is not too obvious in the granodiorite melts on the whole. (3) According to the picture of sample, the conclusion is not reached very well on some issues, such as the volatility and characteristic of molybdenum oxide and dependence on the geology environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hersai porphyry copper deposit(PCD) of eastern junggar, newly discovered copper deposit, is located at the eastern segment of the Xiemisitai-Kulankazigan-Zhifang-Qiongheba Paleozoic island arc, Eastern Junggar. The Hersai PCD is developed in a intrusive complex, characterized by intensive and multiform hydrothermal alteration, including potassic alteration, silification, chloritization,sericitization,kaolinitization and carbonatization. Granodiorite, grandiorite porphyry, granite and concealed explosion breccia are hosts of the ore bodies containing veinlet and disseminated ore. Ore-bearing granite (ZK107-1-9), granodiorite (ZK107-1-9) and Ore-barren granodiorite (HES2-1) are selected to date zircon U-Pb age by SHRIMP method, and have an age of 429.4±6.4Ma ,413.0±3.4Ma and 411.1±4.8Ma, respectively, showing that they were emplaced from Late Silurian to Early Devonian. In addition, sample ZK107-1-9 has some hydrothermal zircons with a weighted mean 206Pb/238U age of 404.9±3.7Ma which is interpreted to be related to the granodiorite porphyry. Re-Os dating of five molybdenite samples yielded a weighted average model age of 408.0±2.9Ma, indicating the metallogenic epoch of the Hersai PCD. The ore-forming age is close to the petrogenic time of garnodiorite (411-413Ma), this suggests the ore-forming porphyry is most possiblely granodiorite porphyry. Systematic major - trace elements and Rb-Sr-Sm-Nd-Pb-Hf isotopic characteristics were studied. Analysis results show that these intrusives have some interesting and special characteristics, as following:1) containing both calc-alkaline rocks and high potassium calc-alkaline rocks ; 2) have some characteristics of adakite, but not totally, such as much lower La/Yb ratios and no Eu anomaly or just faint Eu anomaly; 3) have an initial 87Sr/86Sr ratios(0.703852-0.704565) similar to that of BSE, positive εNd(t) values between 6.1 and 7.4, the initial 206Pb/204Pb values (17.576-17.912), 207Pb/204Pb values (15.400-15.453) , 208Pb/204Pb values (37.252-37.466) , and high εHf(t) values (10.2-15.4) close to the value of depleted mantle. These geochemical features suggest that these igneous rocks in the Hersai area not only have some characteristics of island arc, but also some characteristics that only appear in the continental margin arc. It is suggested that Hersai PCD is formed in the subduction setting by the partial melting of young crust. These works and advancements mentioned in the paper are helpful to understand the deposit geology, geochemistry and metallogenesis of Hersai PCD. It is also significant to understand mineralization and tectonic setting in the Qiongheba area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Central Xiemisitai is located on the northwest edge of the Junggar Basin, bounded on the north by Sawuer Mountain, and southward Junggar Basin. Geotectonically, it is within the Chengjisi-Ximisitai-Santanghu island arc of Late Paleozoic, between Siberian and Junggar plates. The volcanics in this area mainly consist of acidic volcanic lava, rock assemblage of esite, dacite, and rhyolite, and the transitional phase is comparatively developed. Besides, Si2O of volcanics here covers a large range of 53.91-79.28t %, K2O of 1.71-6.94t%, and Na2O of 2.29-5.45t%, which is a set of metaluminous- peraluminous high K calc-alkaline to calc alkaline mid-acidic volcanic series. In addition, the volcanics are potassic to high-potassic assemblage, with slight shoshonite in. The REE curve of volcanics in central Xiemisitai is rightward and smooth, inclining to LREE enrichment, which reveals the characteristics of island-arc volcanics. Through the lithology changing from neutral to acidic, the negative anomaly of Eu is increasing. The volcanics here deplete HFSE such as Nb, Ti, P, etc., but relatively rich in LILE like Rb, K, Th, etc., possessing geochemistry characteristics of arc volcanics, which means that the lava source region is watery, under the meta-somatic contamination of subducted components. Moreover, high Ba and Sr show volcanics in epicontinental arc environment, and their contemporaneous granitoid rocks are also marked with the characteristics of volcanic arc granite. In central Xiemisitai, the volcanics zircon age of volcanic rhyolite is 422.5Ma± 1.9Ma, mid-late Silurian. Only one sample zircon has been measured for the present, not very convincing, so volcanics here might not come from Devonian volcanism. Consequently, further confirming the volcanic age will play a key role in the research on the beginning of volcanism in Xiemisitai area and even North Xinjiang. This area includes three copper mineralization types: a) from andesite fracture; b) from rhyolite fracture broken zone, with the copper mineralization distributed by veins along the fissure; and c) from quartz veins. The mineralization of earth surface in S24 ore spot is intensive, and the primary geochemistry reconnaissance anomaly is fairly good. According to display data, the maximum content of Cu is as high as 0.9% and as low as 0.05%. Also, ore-control fracture structure is having a considerable scale in the strike of fracture both horizontally and vertically downwards, and the result of the geophysics stratagem EH-4 system reveals obvious low-resistivity anomaly. As a result, we believe that the S24 plot is expected to be a volcanic copper deposit target area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Daolangheduge copper polymetallic deposit is located on east edge of Ondor Sum-Bainaimiao metallogenic belt, which is a prospective area of porphyry copper deposit, in Xianghuangqi of central Inner Mongolia. Geotectonically, it occurred in the continental margin accretion belt along the north margin of North China Plate, south of the suture zone between North China Plate and Siberian Plate. The intrusive rocks in this area mainly consist of intermediate-acid magmatic rocks, and the quartz veins, tourmaline veins and the transitional phase are comparatively developed. According to our research, the ore-bearing rock body is mainly quartz diorite while the surrounding rock is mainly biotite granite. Besides, the wall rock alteration are mainly propylitization, pyritization and silicification, which consist of epidotization, actinolitization, chloritzation and so on. The metallic minerals are mainly chalcopyrite and pyrite. In addition, the primary ore is mainly of quartz-chalcopyrite-pyrite type. Above all, Daolangheduge copper polymetallic deposit is suggested to be categorized in the porphyry copper type. With isotopic dating and geochemical research on quartz diorite of ore-bearing rock body, the zircon LA-ICP-MS U-Pb dating of two samples yields an age of 266±2 Ma, falling into the range of late Permian Epoch. It is the first accurate age data in Xianghuangqi area, so it should play a key role in the research of deposit and magmatic rocks in this area. With the major elements and trace elements analysis of 14 samples, the quartz diorite should be among the calc-alkaline series, the geochemical characteristics show higher large-ion lithophile elements of Rb, Sr and LREE, low high-field strength elements of Nb, Ta and high transition elements of Cu, Cr . Also, the REE patterns have negative Eu anomalies. With the same analysis of 4 sample for the biotite granite, the geochemical characteristics show higher Rb, Th,, Zr, Hf and LREE, low Nb, Sm and HREE and Eu has no anomaly. It should be among the calc-alkaline series, over aluminum quality and has characteristics of Adakites. According to isotopic dating and geochemical characteristics of ore-bearing rock body, it is suggested that its materials mainly derived from upper mantle that had fractional crystallization and its magma source region may be affected by fluid metasomatism of paleo-asian ocean. It should be an extensional process of post-orogeny according to regional tectonic evolution. Consequently, because of the decrease of temperature and pressure, the ore forming fluid was raised to surface and mineralized accompanied by magmatic activity which might occur in south of the suture zone. By geological survey, further geophysical and geochemical work is needed. In this area, we have accomplished high precision magnetic prospecting, high density electrical survey, gravity prospecting, soil geochemical prospecting, X-ray fluorescence analyzer prospecting and so on. According to geophysical and geochemical abnormal and surface occurrence, 11 drills are arranged to verification. The type of ores are mainly quartz-chalcopyrite-pyrite ores within 3 drills by drill core logging. Although the grade as well as the scale of already-found Cu deposits are insufficient for industrial exploitation, the mineralization prospect in this region is supposed to be great and the potential in mineral exploration at depth is excellent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mafic-ultramafic complex belt well developed in Eastern Tianshan, Xinjiang, NW China, which contains a series of Cu-Ni sulfide deposits. This area is the important production basis for Cu-Ni deposits, including Tulargen deposit, Hulu deposit, Huangshan-Huangshandong deposit, Hulu deposit, Xiangshan deposit, Tianyu deposit, Chuanzhu deposit. In China, especially Eastern Tianshan, it is prevalent that large Cu-Ni deposits occurred in small intrusions, typically including Jinchuan, Kalatongke, et al., so the ore-forming mechanism and evaluation rule for those small intrusions are very meaningful and of universal significance. On the basis of the research to typical Cu-Ni deposits, ore-forming conditions and processes are summarized through which to evaluate the ore-bearing potential for barren intrusions and unexplored mafic-ultramafic intrusions. By the contrast, metallogenic rule and mechanism of ore genesis are concluded, and evaluation system is preliminarily set up on the basis of these conclusions. Quantitatively simulation for the composition of olivine is introduced for the first time in China to discuss the interaction between magma and sulfide, and a new method to calculate the Mg-Fe composition of primitive magma is developed. Interaction between magma and sulfide liquid is used to get the Ni content in sulfide liquid. Sulfur isotopic characteristics in sulfide minerals in country rocks and ores are used to judge crustal sulfur introduction, which is applied for the first time in China. Re-Os isotopic characteristics are related to the ore-forming process, to interpret the process of enrichment of chalcophile elements. On the basis of the evaluation system, Mati, Chuanzhu, Luodong, Xiadong, those intrusions are evaluated to their ore-bearing potential. According to the studies to typical Cu-Ni deposits, conduit-type ore-forming model is set up, and the characteristics of the model are concluded systematically. The evaluation system and conduit-type ore-forming model can be helpful to the evaluation of mafic-ultramafic intrusions in this and similar mafic-ultramafic intrusion belts. The studied typical deposits and mafic-ultramafic intrusion include Tulargen deposit, Hulu deposit, Huangshandong deposit, Chuanzhu deposit, Mati intrusion,Luodong intrusion, Xiadong intrusion, and others. Through studies, there are similar characteristics for Tulargen and Hulu deposits in magma origin, composition of primitive magma(MgO=12.5%, FeO=12% and MgO=11%, FeO=10.5% respectively), magma evolution, mechanism of sulfide segregation and conduit-type ore-forming process. By Re-Os isotopic system, the ore forming date of Tulargen deposit is 265.6±9.2Ma, which is consistent to regional metallogenic event, but little younger. The Mg-Fe composition of primitive magma of Baishiquan, Huangshandong area, Kalatongke is lower than that of Tulargen and Hulu deposit, showing common basalt composition. The Mg# value(Mg#=(Mg/Mg+Fe)increases gradually from Kalatongke to Baishiquan to Huangshan-Huangshandong East. Baishiquan intrusions show relatively higher crustal contamination by evidence of trace element, which indicates the lower magma original source, from depleted mantle to crust. One break is the discovery of komatiitic intrusion, Xiadong intrusion, which shows characteristics of highly magnesium (Max Fo=96). The primitive magma is calculated of MgO=28%,FeO=9%, belonging to komatiitic magma. Tectonic evolution of Eastern Tianshan is discussed. By the statistics of ore-forming data of porphyry copper deposits, magmatic sulfide Cu-Ni deposits, orogenic hydrothermal gold deposits, we believe that those deposits are the successive products of oceanic subduction, are and back-arc basin collision and post-orogenic extention. And Cu-Ni sulfide deposits and orogenic gold deposits occurred in the stage of post-orogenic extention. According to the conclusions, the conduit-type ore-forming mechanism of magmatic sulfide deposit is set up, and its characteristics and conditions are concluded as well. The conduit-type ore-forming system includes magma generation, sulfide segregation, enrichment of chalcophile elements, interaction of sulfide and magma, sulfide collection in limited space in magma conduit and bottom of the chamber, which make a whole ore-forming system.The ore-forming process of Cu-Ni sulfide deposits is concluded as three steps: 1. mantle derived magma rises upward to the middle-upper crust; 2. magma suffers crustal contamination of different degrees and assimilates crustal sulfur, which leads to sulfur saturation and sulfide segregation. Sulfide liquid interacts with magma and concentrates chalcophile elements; 3. enriched sulfide located in the conduit(Tulargen) or bottom of the chamber (Hulu). Depleted magma rises upward continuously to form barren complexes. For the practical cases, Tulargen deposit represents the feeding conduit, and Hulu deposit represents the bottom of the staging magma chamber. So the deeper of west of Tulargen and southwest of Hulu are the favorite locate for ore location. The evaluation for ore potential can be summarized as follows: (1) Olivine can be served as indicator for magma evolution and events of sulfide segregation; (2) Sulfur isotopic characteristics is an efficient method to judge sulfur origin for magmatic sulfide deposit; (3) Re-Os content of the ores can indicate interaction between sulfide and silicate magma and crustal contamination; (4) PGE mineralization is effected by degree of partial melting of mantle; (5) Cu/Zr is efficient parameter to judge sulfide segregation; (6) The effects of multiple magma fractionation and emplacement are important, for inverse order shows the destruction to previous solid lithofacies and orebodies. Mati, Chuanzhu, Xiadong, Luodong, mafic-ultramafic intrusions are evaluated using evaluation system above. Remarkable Ni depletion is found in olivine of Mati, and southwest of the intrusion can be hopeful location for ore location. Chuanzhu intrusion has remarkable evidence of sulfide segregation, but the intrusion represents the narrow feeder conduit, so the wide part of the conduit maybe the favorite location for sulfide to deposit. The ore potential of Luodong and Xiadong is not good. Both the intrusions show no Ni depletion in olivine, and there is no sulfide in country rocks, so no crustal sulfur is added into the magmatic system. For Sidingheishan, a very large intrusion, the phenomenon of sulfide segregation is found, but there are no favorite places for sulfide to deposit. So the Cu-Ni ore potential maybe not good, but PGE mineralization should be evaluated further.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tectonic dynamics of metallogenetic fluids is a new crossed subjects among fluid geology, mineral deposit geology and structural geology, and is one of the major current projects of geosciences. It is mainly focused on structures and tectonic dynamic induced by fluid motion, variation of physical condition of fluids (such as temperature and pressure), and interaction between chemical component of fluids and wall rocks in the crust. It takes features of deformation and metamorphysim, which formed during interaction between fluids and rocks and have been perserved in rocks, as basic research objects. After studying types, orders, distributions and fabrics of these features, and analyzing and testing physical and chemical information from these features by some techniques, it is intended to reconstruct moving process of fluids, dynamics of interaction between fluids and rocks, and dynamics of mineralizations. Three problems of tectonic dynamics of metallogenetic fluids, which have not been paid much attentions before, have been studied and discussed in this report. Three relative topics are including: 1)Double-fracturing induced by thermal stress and pressure of fluids and mineralization of Gold-copper in Breccia Pipe at the Qibaoshan in Shandong Province; 2)Parting structures induced by K-metasomatism in the Hougou area, northwestern Heibei province; 3)Migration mechanism of dissolved mass in Fe&S-rich fluids in Hougou gold deposit in Heibei province. After a synthetical study of two years, the author has made some new processes and progresses. The main new advances can be summaried as the following: 1)Thermal stress of fluids formed by temperature difference between fluids and country rock, during upword migration process of fluids with high temperature and pressure, can make rock to break, and some new fractures, which surfaces were uasally dry, formed. The breccia pipe at the Qibaoshan area in Shandong province has some distinct texture of fluidogenous tectonics, the breccia pipe is caused by double-fracturing induced by thermal stress and pressure, distribution of gold-corpper ore bodies are controlled powerfully by fluidogenous tectonics in the breccia pipe. 2)The author discovered a new kind of parting structures in K-alterated rocks in the northwestern part of Hebei province. The parting structures have some distinct geometry and fabrics, it is originated from the acting and reacting fores caused by K-metasomatism. Namely, the crystallizations of metasomatic K-feldspars are a volume expansion process, it would compress the relict fluid bodies, and the pressures in the relict fluid bodies gathered and increased, when the increased pressure of the fluid relict bodies is bigger than the strength of K-feldspars, the K-feldspars were broken with the strong compression, and the parting structures formed. 3)Space position replacing is a important transport pattern of dissolved mass in Fe&S-rich fluid. In addition, basing on views of tectonic dynamics of metallogenic fluids, and time-space texture of fluid-tectonic-lithogenetic-mineralization of the known gold-corpper mineral deposit and the subvolcanic complex at Qibaoshan area in Shandong province, this report does a detail prodict of position-shape-size of two concealed ore-bearing breccia pipe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jiaodong Peninsula is the largest repository of gold in China. Varieties of studies have been involved in the mechanism of metallogenesis. This thesis is a part of the project "Study of basic geology related to the prespecting of the supra-large deposits" which supported by National Climbing Program of China to Prof. Zhou. One of the key scientific problems is to study the age and metallogenic dynamics of ore deposit and to understand how interaction between mantle and crust constrains on metallogenesis and lithogenesis. As Jiaodong Peninsula to be study area, the Rb-Sr, Sm-Nd and Pb isotopic systematics of pyrite and altered rocks are measured to define the age and origin of gold. The elemental and Sr-Nd-Pb isotopic compositions of dikes and granites was studied to implicate the source and lithogenesis of the dike and granite and removal of lithosphere and the interaction between mantle and crust in the Jiaodong Peninsula. Considering the tectonic of Jiaodong Peninsula, basic on the time and space, this thesis gives a metallogenic dynamics of gold mineralization and discusses the constraints of the interaction between mantle and crust on the metallogenesis and lithogenesis. This thesis reports the first direct Rb-Sr dating of pyrites and ores using sub-sampling from lode gold deposit in Linglong, Jiaodong Peninsula and the results demonstrate this as a useful geochronological technique for gold mineralization with poor age constraint. The Rb-Sr data of pyrites yields an isochron age of (121.6-122.7) Ma, whereas, those of ore and ore-pyrite spread in two ranges from 120.0 to 121.8 Ma and 110.0-111.7 Ma. Studies of characteristic of gold deposit, microscopy of pyrite and quartz indicate that the apparent ages of ore and ore-pyrite are not isochron ages, it was only mixed by two end members, i.e., the primitive hydrothermal fluids and wall rocks. However, the isochron age of pyrite samples constrains the age of gold mineralization, i.e., early Cretaceous, which is in good consistence with the published U-Pb ages of zircon by using the SHRIMP technique. The whole rock Rb-Sr isochron age of altered rocks indicates that the age of gold mineralizing in the Xincheng gold deposit is 116.6 ± 5.3 Ma. The Sr, Nd and Pb isotopic compositions of pyrite and altered rocks indicate that the gold and relevant elements were derived from multi-sources, i.e. dikes derived from enriched lithospheric mantle and granites, granodiorites and metamorphic rocks outcropped on the crust. It also shows that the hydrothermal fluids derived from mantle magma degassing had play an important role in the gold mineralizing. The major and trace elements, Sr-Nd-Pb isotopic data of granites and granodiorites suggest that the Linglong Granite and Kunyushan Granite were derived from partial melting of basement rocks in the Jiaodong Peninsula at post-collision of North China Craton with South China Craton. Guojialing Granodiorite was considered to be derived from a mixture source, that is, mixed by magmas derived from an enriched lithospheric mantle and crust during the delamination of lithosphere induced by the subduction of Izanagi Plate and the movement of Tancheng-Lujiang Fault. There are kinds of dikes occurred in the Jiaodong Peninsula, which are accompanying with gold mineralization in time and space. The dikes include gabrro, diabase, pyroxene diorite, gabrrophyre, granite-porphyry, and aplite. The whole rock K-Ar ages give two age intervals: 120-124 Ma for the dikes that erupted at the gold mineralizing stage, and <120 Ma of the dikes that intruded after gold mineralizing. According to the age and the relationship between the dikes and gold mineralizing, the dikes could be divided into two groups: Group I (t = 120-124 Ma) and Group II (t < 120Ma). Group I dikes show the high Mg and K, low Ti contents, negative Nb anomalies and positive Eu anomalies, high ~(87)Sr/~(86)Sr and negative εNd(t) values and an enrichment in light rare earth elements, large ion lithosphile elements and a depletion in high field strength elements. Thus the elemental and isotopic characteristics of the Group I dikes indicate that they were derived from an enriched lithospheric mantle perhaps formed by metasomatism of the melt derived from the recycled crustal materials during the deep subduction of continent. In contrast, the Group II dikes have high Ti, Mg and K contents, no negative Nb anomalies, high ~(87)Sr/~(86)Sr and positive or little negative εNd(t) values, which indicate the derivation from a source like OIB-source. The geochemical features also give the tectonic constraints of dikes, which show that Group I dikes were formed at continental arc setting, whereas Group II dikes were formed within plate background. Considering the tectonic setting of Jiaodong Peninsula during the period of gold mineralizing, the metallogenic dynamics was related to the subduction of Izanagi Plate, movement of Tancheng-Lujiang Fault and removal of lithopheric mantle during Late Mesozoic Era.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic environments of mineralization in Mesozoic Jiaodong gold mine concentrated area can be devided into two types, compressive environment which related to intracontinental collision and extensional environment which related to intracontinental volcanic rift. The altered rock type (Jiaojia type) and quartz vein type (Linglong type) which related to the former one, were discovered for several years, and became the main types of gold deposits in recent years. A new type gold deposit, syn-detachment altered tectonic breccia type gold deposit, such as Pengjiakuang gold deposit and Songjiagou gold deposit has been discovered on the northeastern margin of Jiaolai Basin. In this paper, the new type of gold deposit has been studied in detail. The study area is located at the northeastern boundaries of Jiaolai Basin, and between the Taocun-Jimo Fault and Wji-Haiyang Fault, in the eastern part of the Jiaodong Block. Pengjiakuang gold deposit and Songjiagou gold deposit occur in a arc-shape detachment fault zone between conglomerate of Lower Cretaceous Laiyang Formation and metamorphic complex of Lower Proterozoic Jingshan Group. Regional geological studies show that Kunyuanshan and Queshan granite intrusions and Qingshanian volcanism were formed in different period of lithospheric thinning of East China in Mesozoic. Granite intrusions were formed in compressive environment, while Qingshanian volcanism were formed in extensional environment. They are all related to the detachment of Sulu Orogenic Belt and the sinistral motion of Tanlu Fault. The Pengjiakuang detachment systems which were formed in the the sinistral motion of Tanlu Fault are the important ore-controlling and ore-containing structure. The Pengjiakuang type gold deposit, controlled by detachment structure, was formed before Yanshanian volcanic period concerning with mixture of meteoric water and magmatic water found in fluid inclusions of gold ores. The minerogenetic epoch has been proposed in 90~120Ma. the host rocks have been extensively subjected to pyritization, silicification, sericitization and carbonatization. Individual ore-body has maximum length of 800m, oblique extension of 500~700m and gold grade of 1~43 * 10~(-6). Native gold is disseminated in silicified, phyllic or carbonatized tectonic breccia. Sulfur, carbon and lead isotope studies on gold ores and wall rocks show that the sulfur come from the metamorphic complex of Lower Proterozoic Jingshan Group, carbon comes from the marble in Jingshan Group, while a part of lead comes from the mantle. The mineralizing fluid is rich in Na~+ and Cl~-, but relatively impoverished in K~+ and F~-. According to the date from hydrogen and oxygen isotopic compositions (δ~(18)OH_2O = 0.59%~4.03%, δDH_2O = -89.5%~97.9%), the conclusion can be reached that the mineralizing fluid of Pengjiakuang gold deposit was a kind of mixed hydrothermal solution which was mainly composed of meteoric water and magmatic water. A genetical model has been formulated. Some apparent anomaly features which show low in the central part and high in the both sides corresponding to the gold-bearing structure, were sum up after analying a vast amount of date by prospecting the orebodies using gamma-ray spectrometer, electrogeochemical parameter technique, controlled source audio magnetic telluric (CSAMT) and shallow surface thermometry in Pengjiakuang gold deposit. The location forecasting problem of buried orebodies has been solved according to these features, and the successful rate is very high in well-drilling. The structural geological-geophysical-geochemical prospecting model has been formulated on the base of the study of geological, geophysical and geochemical characteristics of Pengjiakuang type gold deposit, and the optimum combinational process of geophysical and geochemical prospecting techniques has been summed up. A comparative study shows that the Pengjiakuang type gold deposit, the syn-detachment altered tectonic breccia type gold deposit, is different from Jiaojia type gold deposits and Linglong type gold deposits, in Jiaodong Block. In general, if formed under an extensional tectonic condition and located at detachment fault zone along the margin of Mesozoic Jiaolai basin, and the gold mineralization has also close genetic relationship with alkaline magamtism. Being a new type of gold deposit in Jiaodong gold mine concentrated area, it could be potential to explore in the same regions which processed the same ore-forming geological conditions and mineralization informations.