160 resultados para A full-length play
Resumo:
A homologue of the lower vertebrates translationally controlled tumor protein (TCTP) was cloned from the marine fish Japanese sea perch (Lateolabrax japonicus) by the technology of homology cloning. The full-length cDNA sequence of the sea perch TCTP gene contained a 5' untranslated region (UTR) of 47 bp, a 3' UTR of 433 bp, and a putative open reading frame (ORF) of 510 bp encoding a polypeptide of 170 amino acids. The deduced amino acid sequence of the sea perch TCTP gene showed a high similarity to that of zebrafish, rohu, rabbit, chicken and human. Sequence analysis revealed there were a signature sequence of TCTP family, an N-glycosylation site, and five Casein kinase phosphorylation sites in the sea perch TCTP. The temporal expression of TCTP genes in healthy and lipopolysaccharide (LPS) challenged fishes was measured by semi-quantitative reverse transcription-PCR (RT-PCR). The results indicated that LPS could up-regulate the expression of sea perch TCTP in the examined tissues, including head-kidney, spleen and liver.
Resumo:
A full-length Cks1 homologue gene, AmphiCks1, was identified in amphioxus, Branchiostoma belcheri tsingtauense. Sequence characteristics, phylogeny and patterns of expression during embryonic and larval development were established. The protein predicted from AmphiCks1 showed high sequence identity with vertebrate and invertebrate homologues. Protein structural studies and phylogenetic analysis suggested that Cks homologues are evolutionarily conserved. The AmphiCks1 transcript was detected in most early developmental stages by northern blotting and whole-mount in situ hybridization, suggesting a role for the gene in cell division. (c) 2005 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
The interleukin 1beta (IL-1beta) cDNA was cloned from the red seabream (Pagrus major) by homology cloning strategy. A cDNA fragment was amplified by PCR using two degenerated primers, which were designed according to the conserved regions of other known IL-1beta sequences, and elongated by 3' ends and 5' ends RACE PCR to get the full length coding sequence of red seabream IL-1beta (RS IL-1beta). The sequence contained 1252 nucleotides that included a 5' untranslated region (UTR) of 84 bp, a 3' UTR of 410 bp and an open reading frame (ORF) of 759 nucleotides which could be translated into a putative peptide of 253 amino acids with molecular weight of 28.6 kD and putative isoelectric point pI of 5.29. The deduced peptide contained two potential N-glycosylation sites and an identifiable IL1 family signature, but lacked the signal peptide and the clear ICE cut site, which were common in other nonmammalian IL-1beta genes. The RS IL-1beta had the highest homology with piscine IL-1beta according to phylogenetic tree analysis. The transcript expression was detected in blood, brain, gill, heart, head kidney, kidney, liver, muscle and spleen in the pathogen challenged and healthy red seabream by RTPCR. Results showed that the RS IL-1beta mRNA was constitutively expressed in most of the tissues both in stimulated and un-stimulated fish, and the expression could be enhanced by pathogen challenging.
Resumo:
The cDNA encoding hsc70 of Chinese shrimp Fenneropenaeus chinensis was cloned from hepatopancreas by RT-PCR based on its EST sequence. The full length cDNA of 2090 bp contained an open reading frame of 1956 nucleotides and partial 5'- and 3'-untranslated region(5'- and 3'-UTR). PCR amplification and sequencing analysis showed the existence of introns in the region of 1-547 bp, but they did not exist in the region of 548-2090 bp of hsc70 cDNA. When the deduced 652 amino acid sequence of HSC70 was compared with the members of HSP70 family from other organisms, the results showed 85.9% similarity with HSC71 from Oncorhynchus mykiss and HSC70 from Homo sapiens. It also exhibited 85.8% similarity with HSP70 from Mus musculu and 85.4% with HSC70 from Manduca sexta. Expression analysis showed that hsc70 mRNA was espressed constitutively in hepatopancreas, muscle, eyestalks, haemocytes, heart, ovary, intestine and gills in Fenneropenaeus chinensis. No difference could be detected on hsc70 mRNA level in muscle between heat-shocked and control animals.
Resumo:
A fragment of TNFalpha cDNA sequence from red seabream was cloned by homology cloning approach with two degenerated primers which were designed based on the conserved regions of other animals' TNF sequences. The sequence was elongated by 3' and 5' RACE to get the full length CDS sequence. This sequence contained 1264 nucleotides that included a 5' UTR of 85 bp, a 3' UTR of 514 bp and an open reading frame (ORF) of 666 bp which could encode 222 amino acids propeptide. In 3' UTR, there were several mRNA instability motifs and three endotoxin-responsive sequences, but the sequence lacked the polyadenylation signal. The deduced peptide had a clear transmembrane domain, a TNFalpha family signature and a TNF2 family profile. The cell attachment sequence and the glycosaminoglycan attachment sites were also found in the sequence. The red seabream TNF sequence shared relatively high similarity with both mammalian TNFalpha and TNFbeta by multiple sequence alignments. Phylogenetic analysis showed that the piscine TNFalpha were located independently in a different branch compared with mammalian TNFalpha and TNFbeta. Based on the primary and secondary structure analysis and gene expression study, we could concluded that the red seabream TNF should be a TNFalpha, not TNFbeta. RT-PCR was used to study TNFa transcript expression. 24 h after the red seabream was challenged by Vibrio anguillarum, the RS TNFalpha transcript expression were detected in blood, brain, gill, heart, head kidney, kidney, Ever, muscle and spleen. Results showed that TNFalpha mRNA was constitutively expressed in parts of the tissues both in stimulated and unstimulated fish and the expression could be enhanced after the pathogen infection.
Resumo:
Prophenoloxidase (proPO) is a conserved copper-containing enzyme that plays important roles in immune response of crustaceans and insects. In the present study, the full-length cDNA of a prophenoloxidase (designated EsproPO) was cloned from haemocytes of Chinese mitten crab Eriocheir sinensis by expressed sequence tag (EST) and PCR techniques. The isolated 3549 bp full-length cDNA of EsproPO contained a 2040 bp open reading frame (ORF) encoding a putative proPO protein of 679 amino acids, a 5'-untranslated region (UTR) of 68 bp, and a long 3'-UTR of 1441 bp. Two putative copper-binding sites, a proteolytic activation site, and a complement-like motif (GCGWPQHM) were identified in the deduced amino acid sequence of EsproPO. Homology analysis revealed that EsproPO was highly similar to other proPOs from crustaceans with identities from 52% to 68%. The conserved domains and motifs, and higher similarity with other proPOs suggested that EsproPO was a member of the proPO family. The mRNA expression of EsproPO and PO specific activities in the tissues of hepatopancreas, gill, gonad, muscle, heart, eye and haemocytes were measured by quantitative real-time PCR and colorimetric assay, respectively. The mRNA transcripts of EsproPO and PO specific activities could be detected in all the examined tissues with the highest level both in hepatopancreas. Three peaks of EsproPO mRNA expression were recorded at 2 h, 12 h and 48 h in haemocytes of Chinese mitten crab post Vibrio anguillarum challenge, which was consistent with the temporal profile of PO specific activity. The mRNA expression pattern and the activity fluctuation of EsproPO post V. anguillarum stimulation indicated that it was potentially involved in the acute response against invading bacteria in Chinese mitten crab. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The pacifastin family, characterized by several conserved arrays of six cysteine residues, is a newly identified serine protease inhibitor (SPI) family discovered uniquely in arthropods and plays important roles in multiple biological processes. In the present study, the full-length cDNA of a pacifastin light chain (designated ESPLC) was cloned from the Chinese mitten crab Eriocheir sinensis by expressed sequence tags (ESTs) and PCR techniques. The 1036 bp ESPLC cDNA contained an 831 bp open reading frame (ORF) encoding a putative pacifastin-related peptide of 276 amino acids, a 5'-untranslated region (UTR) of 67 bp, and a 3'-UTR of 138 bp. Six putative conserved domains sharing a characteristic cysteine array (Cys-Xaa(9-12)-Cys-Asn-Xaa-Cys-Xaa-Cys-Xaa(2-3)-Gly-Xaa(3-4)-Cys-Thr-Xaa(3)-Cys) were identified in the deduced amino acid sequence of ESPLC. The conservation of these PLDs (pacifastin light chain domains) and the relative higher similarity of ESPLC to other pacifastin-related precursors suggested that ESPLC was a member of pacifastin family. The mRNA transcripts of ESPLC were found to be higher expressed in hepatopancreas, gill and haemolymph than in gonad, muscle and heart, with the highest expression level in hepatopancreas. The ESPLC mRNA expression in haemolymph of Chinese mitten crab was up-regulated at 2 h and 12 h after challenged with Listonella anguillarum. The tissue distribution and temporal characteristics of ESPLC mRNA expression, similar to that of prophenoloxidase gene in E. sinensis, suggested that ESPLC was potentially involved in the response against invading bacteria, with the possibility that it functioned in the prophenoloxidase system in E sinensis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone contributing to the folding, maintenance of structural integrity and proper regulation of a subset of cytosolic proteins. The full-length cDNA of Zhikong scallop Chlamysfarreri HSP90 (designated CfHSP90) was cloned by EST and rapid RACE techniques. It was of 2710 bp, including an open reading frame (ORF) of 2181 bp encoding a polypeptide of 726 amino acids with all the five HSP90 family signatures. BLAST analysis revealed that the CfHSP90 gene shared high similarity with other known HSP90 genes. Fluorescent real-time quantitative RT-PCR was used to examine the expression pattern of CfHSP90 mRNA in haemocytes of scallops exposed to Cd2+, Pb2+ and Cu2+ for 10 and 20 days, respectively. All the three heavy metals could induce CfHSP90 expression. There was a clear dose-dependent expression pattern of CfHSP90 after heavy metals exposure for 10 days or 20 days. Different concentrations of the same metal resulted in different effects on CfHSP90 expression. The results indicated that CfHSP90 responded to various heavy metal stresses with a dose-dependent expression pattern as well as exposure time effect, and could be used as a molecular biomarker in a heavy metal polluted environment. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays key roles in the folding, maintenance of structural integrity and regulation of a subset of cytosolic proteins. In the present study, the cDNA of Argopecten irradians HSP90 (designated AiHSP90) was cloned by the combination of homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of AiHSP90 was of 2669 bp, including an open reading frame (ORF) of 2175 bp encoding a polypeptide of 724 amino acids with predicted molecular weight of 83.08 kDa and theoretical isoelectric point of 4.81. BLAST analysis revealed that AiHSP90 shared high similarity with other known HSP90s, and the five conserved amino acid blocks defined as HSP90 protein family signatures were also identified in AiHSP90, which indicated that AiHSP90 should be a cytosolic member of the HSP90 family. Fluorescent real-time quantitative PCR was employed to examine the expression pattern of AiHSP90 mRNA in haemocytes of scallops challenged by Gram-negative bacteria Vibrio anguillarum and Gram-positive bacteria Micrococcus luteus. In both bacterial challenged groups, the relative expression level of AiHSP90 transcript was up-regulated and reached maximal. level at 9 h after injection, and then dropped progressively to the original level at about 48 h post challenge. The results indicated that AiHSP90 was potentially involved in the immune responses against bacteria challenge in scallop A. irradian. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Catalase is one of the central enzymes involved in scavenging the high level of reactive oxygen species (ROS) by degradation of hydrogen peroxide to oxygen and water. The full-length catalase cDNA of Zhikong scallop Chlamys farreri (denoted as CfCAT) was identified from hemocytes by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The nucleotide sequence of CfCAT cDNA consisted of 3146 bp with a 5' UTR of 103 bp, an unusually long 31 UTR of 1519 bp with a canonical polyadenylation signal sequence AATAAA and a potyA tail, and an open reading frame (ORF) of 1521 bp encoding a polypeptide of 507 amino acids with predicted molecular weight of 57.5 kDa. The deduced amino acid sequence of CfCAT has significant homology to catalases from animals, plants and bacteria. Several highly conserved motifs including the proximal heme-ligand signature sequence RLFSYNDTH, the proximal active site signature FNRERIPERVVHAKGGGA, and the three catalytic amino acid residues of His(72), Asn(145) and Tyr(355) were identified in the deduced amino acid sequence of CfCAT. The CfCAT was demonstrated to be a peroxisomal glycoprotein with two potential glycosylation sites and a peroxisome targeting signal of ANL that was consistent with human, mouse and rat catalases. The time-course expression of CfCAT in hemocytes was measured by quantitative real-time PCR. The expression of CfCAT increased gradually and reached the highest point at 12 h post-Vibrio infection, then recovered to the original level at 24 h. All these results indicate that CfCAT, a constitutive and inducible protein, is a member of the catalase family and is involved in the process against ROS in scallop. (c) 2007 Published by Elsevier Ltd.
Resumo:
Anti-lipopolysaccharide factor (ALF) represents one kind of basic proteins, which binds and neutralizes LPS and exhibits strong antibacterial activity against Gram-negative R-type bacteria. The ALF gene of Chinese mitten crab Eriocheir sinensis (Milne Edwards, 1853) (denoted as EsALF) was identified from haemocytes by expressed sequence tag (EST) and PCR approaches. The full-length cDNA of EsALF consisted of 700 nucleotides with a canonical polyadenylation signal-sequence AATAAA, a polyA tail, and an open-reading frame of 363 bp encoding 120 amino acids. The high similarity of EsALF-deduced amino acid sequence shared with the ALFs from other species indicated that EsALF should be a member of ALF family. The mRNA expression of EsALF in the tissues of heart, gonad, gill, haemocytes, eyestalk and muscle was examined by Northern blot analysis and mRNA transcripts of EsALF were mainly detected in haemocytes, heart and gonad. The temporal expression of EsALF in haemocytes after Vibrio anguillarum challenge was recorded by quantitative real-time RT-PCR. The relative expression level of EsALF was up-regulated rapidly at 2 h post-injection and reached 3-fold to that in blank group. After a drastic decrease to the original level from 4 to 8h, the expression level increased again and reached 4-fold to that in the blank group at 12 h post-injection. The genomic DNA sequence of EsALF gene consists of 1174bp containing three exons and two introns. The coding sequence of the EsALF mature peptide was cloned and expressed in Escherichia coli BL21(DE3)-pLysS to further elucidate its biological functions. The purified recombinant product showed bactericidal activity against both Gram-positive (G(+)) and Gram-negative (G(-)) bacteria, which demonstrated that the rEsALF was a broad-spectrum antibacterial peptide. All these results indicated that EsALF was an acute-phase protein involved in the immune responses of Chinese mitten crab, and provided a potential therapeutic agent for disease control in aquaculture. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Histone H2A is reported to participate in host defense response through producing novel antimicrobial peptides (AMPs) from its N-terminus in vertebrates and invertebrates, while the AMPs derived from H2A have not to our knowledge been reported in mollusca. In the present study, gene cloning, mRNA expression of H2A from scallop Chlamys farreri, and the recombinant expression of its N-terminus were conducted to investigate whether a similar mechanism exists in mollusca. The full-length DNA of H2A was identified by the techniques of homology cloning and genomic DNA walking, The full-length DNA of the scallop H2A was 696 bp long, including a 5'-terminal untranslated region (UTR) of 90 bp, a 3'-terminal UTR of 228 bp with a stem-loop structure and a canonical polyadenylation signal sequence AATAAA, and an open reading frame of 375 bp encoding a polypeptide of 125 amino acids. The mRNA expression of H2A in the hemocytes of scallop challenged by microbe was measured by semi-quantitative RT-PCR. The expression of H2A was not upregulated after stimulation, suggesting that H2A did not participate in immunity response directly. The DNA fragment of 117 bp encoding 39 amino acids corresponding to the N-terminus of scallop H2A, which was homologous to buforin I in vertebrates, was cloned into Pichia pastoris GS115. The transformants (His(+) Mut(+)) containing multi-copy gene insertion were selected with increasing concentration of antibiotic G418. The peptide of 39 amino acids was expressed by induction of 0.5% methanol. The recombinant product exerted antibacterial activity against both Gram-positive (G(+)) and Gram-negative (G(-)) bacteria. The antibacterial activity toward G(+) bacteria was 2.5 times more than that against G(-) bacteria. The results elucidated that N-terminus of H2A was a potential AMP and provided a promising candidate for a new antibiotic screening. However, whether H2A is really involved in scallop immune response mechanisms needs to be further investigated. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Lectin is regarded as a potential molecule involved in immune recognition and phagocytosis through opsonization in crustacean. Knowledge on lectin at molecular level would help us to understand its regulation mechanism in crustacean immune system. A novel C-type lectin gene (Fclectin) was cloned from hemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 1482 bp with an 861 bp open reading frame, encoding 287 amino acids. The deduced amino acid sequence contains a putative signal peptide of 19 amino acids. It also contains two carbohydrate recognition domains/C-type lectin-like domains (CRD1 and CRD2), which share 78% identity with each other. CRD1 and CRD2 showed 34% and 30% identity with that of mannose-binding lectin from Japanese lamprey (Lethenteron japonicum), respectively. Both CRD1 and CRD2 of Fclectin have I I amino acids residues, which are relatively invariant in animals' C-type lectin CRDs. Five residues at Ca2+ binding site I are conserved in Fclectin. The potential Ca2+/carbohydrate-binding (site 2) motif QPD, E, NP (Gln-Pro-Asp, Glu, Asn-Pro) presented in the two CRDs of Fclectin may support its ability to bind galactose-type sugars. It could be deduced that Fclectin is a member of C-type lectin superfamily. Transcripts of Fclectin were found only in hemocytes by Northern blotting and RNA in situ hybridization. The variation of mRNA transcription level in hemocytes during artificial infection with bacteria and white spot syndrome virus (WSSV) was quantitated by capillary electrophoresis after RT-PCR. An exploration of mRNA expression variation after LPS stimulation was carried out in primarily cultured hemocytes in vitro. Expression profiles of Fclectin gene were greatly modified after bacteria, LPS or WSSV challenge. The above-stated data can provide us clues to understand the probable role of C-type lectin in innate immunity of shrimp and would be helpful to shrimp disease control. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Peptidoglycan recognition proteins (PGRPs) are a type of pattern recognition molecules (PRM) that recognize the unique cell wall component peptidoglycan (PGN) of bacteria and are involved in innate immunity. The first bivalve PGRP cDNA sequence was cloned from bay scallop Argopecten irradians by expressed sequence tag (EST) and PCR technique. The full-length cDNA of bay scallop PGRP (designated AiPGRP) gene contained 10 18 bp with a 615-bp open reading frame that encoded a polypeptide of 205 amino acids. The predicted amino acid sequence of AiPGRP shared high identity with PGRP in other organisms, such as PGRP precursor in Trichoplusia ni and PGRP SC2 in Drosophila melanogaster. A quantitative reverse transcriptase Real-Time PCR (qRT-PCR) assay was developed to assess the mRNA expression of AiPGRP in different tissues and the temporal expression of AiPGRP in the mixed primary cultured hemocytes challenged by microbial components lipopolyssacharide (LPS) from Escherichia coli and PGN from Micrococcus luteus. Higher-level mRNA expression of AiPGRP was detected in the tissues of hemocytes, gonad and kidney. The expression of AiPGRP in the mixed primary cultured hemocytes was up regulated after stimulated by PGN, while LPS from E. coli did not induce AiPGRP expression. The results indicated that AiPGRP was a constitutive and inducible expressed protein that was mainly induced by PGN and could be involved in scallop immune response against Gram-positive bacteria infection. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Myeloid differentiation factor 88 (MyD88) is a universal and essential adapter for the TLR/IL-1R family. In this report, the first mollusk Myd88 ortholog (named as CfMyd88) was cloned from Zhikong scallop (Chlamys farreri). The full-length cDNA of CfMyd88 was of 1554 bp, including a 5 '-terminal untranslated region (UTR) of 427 bp, a polyA tail, and an open reading frame (ORF) of 1104 bp encoding a polypeptide of 367 amino acids containing the typical TLR and IL-1R-related (TIR) domain and death domain (DD). Homology analysis revealed that the predicted amino acid sequence of CfMyd88 was homologous to a variety of previously identified Myd88s with more than 30% identity. The temporal expressions of CfMyd88 mRNA in the mixed primary cultured haemocytes stimulated by lipopolysaccharide (LPS) and peptidoglycans (PGN) were measured by real-time RT-PCR system. The mRNA expression of CfMyd88 decreased after stimulation with both LPS and PGN, and the lowest level was about 1/3 times (at 6 h) and 1/10 times (at 9 h) to that in the control group, respectively. The expression then recovered and was upregulated to two-fold at 9 h after LPS stimulation or to the original level at 12 It after PGN stimulation. The results suggest that the MyD88-dependent signaling pathway exists in scallop and was involved in the defense system. (c) 2007 Elsevier Ltd. All rights reserved.