168 resultados para 7140-312
Resumo:
为了探讨春小麦水肥耦合作用,采用312-D最优饱和设计,于2000~2003年在辽西半干旱区开展了水肥耦合对春小麦产量效应的田间试验研究。结果表明:在该试验条件下水分对产量的作用最大,磷肥次之,氮肥最小;水肥耦合的产量效应是:中水中肥效应最高,高水高肥次之,低水低肥最低;水肥交互耦合效应大小顺序是:氮水耦合>氮磷耦合>磷水耦合。产量超过4000kg/hm2的水肥管理方案为:施氮量240.1~361.2kg/hm2,施磷量103.1~152.6kg/hm2,灌水量337.5~450.0mm。获得最高产量4610kg/hm2的施氮量为315.1kg/hm2、施磷量111.1kg/hm2、灌水量354.6mm。
Resumo:
以苜蓿根瘤菌Rm10 2 1的 phaC基因突变体菌株Rm1114 4 (phaC ::Tn5 - 2 33)为受体菌 ,通过功能互补 ,成功地从构建的Bradyrhizobium japonicum USDA110基因文库中 ,筛查到能与Rm1114 4互补 ,使之恢复在以乙酰乙酸为唯一碳源的M9培养基 (M9-AA)平板上 5d形成明显可见菌落 ,以及在MOPS平板上形成粘液型菌落的表型的重组粘粒 pDC2 ;经证实 ,该粘粒带有 phbC基因 .完成了该基因的全序列测定并已在GenBank登记 ,登记号为AY0 775 80 .B .japonicumphbC基因由 180 3碱基对组成 ,GC含量 6 1.8% ,AT含量 38.2 % ;编码 6 0 0个氨基酸 ,Mr=6 6 .95× 10 3 .图 3表 3参 13
Resumo:
采用312-D最优饱和设计,在辽西半干旱区开展了连续4年的春小麦田间水肥耦合试验,研究春小麦水分利用效率。结果表明:水肥单因子对水分利用效率有显著影响,影响顺序为:水>磷>氮。其中,氮、磷施用量对水分利用效率的提高是正效应,而灌水量对水分利用效率是负效应。水肥多因子对水分利用效率有交互效应,氮与磷之间、氮与水之间的交互效应极显著,对水分利用效率表现为正效应。磷与水之间表现为负效应,但不显著。水分利用效率超过10kg/(hm2·mm)的水肥优化管理方案为,施氮量102 6~239 3kg/hm2,施磷量84 3~139 0kg/hm2,灌水量41 0~170 9mm。获得最大水分利用效率的施氮量220 6kg/hm2,施磷量76 0kg/hm2,灌水量117 4mm。
Resumo:
采用312-D最优饱和设计,在辽宁西部半干旱区进行了田间春小麦光合作用试验研究.结果表明:叶片光合速率与籽粒产量正相关.水肥单因子对叶片光合速率影响的大小顺序是,氮>水>磷.交互耦合作用对叶片光合速率影响的大小顺序为:氮与水耦合>氮与磷耦合>磷与水耦合.水肥耦合促进叶片光合速率提高的主要原因是:扩大了叶面积、提高了叶片蒸腾速率、增大了叶片气孔导度、提高了胞内水浓度、降低了胞内二氧化碳浓度.单叶光合速率高于7.5×10-3μmol/s的水肥优化管理方案是:施氮量为323.4-399.9 kg/hm2、施磷量为65.8-105.7 kg/hm2、灌水量为276.1-353.2 mm.
Resumo:
降解鸡粪的微生物菌剂是由蛋白分解菌、纤维分解菌、酵母菌、光合细菌、乳酸菌等多种有益微生物组成。这些菌群在生长中产生的代谢物质相互利用,而不发生拮抗现象。在鸡粪堆制发酵过程中微生物菌群以辅料为载体与鸡粪组成了复杂而稳定的微生态系统,能够快速、环保地发酵鸡粪并增加肥效。介绍了微生物菌剂在鸡粪堆肥中的作用、机理、发酵工艺及研究现状。
Resumo:
采用根际袋法研究腐熟有机物料对滨海盐土水稻淹水层及土壤的盐分和植株元素吸收的影响.结果表明,在不排水条件下,施用有机物料使淹水层盐分上升,土壤盐分也高于对照,但其根际富集程度降低;植株K吸收增强,Na则明显下降,Ca、Mg含量略增,但变化没有1价元素明显.
Resumo:
以小麦(Triticum acstivnm)为供试植物,草甸棕壤为供试土壤,以微粒体细胞色素P450及抗氧化酶SOD、POD和CAT酶活性为指标,进行了土壤中菲、芘单一及复合胁迫响应研究。结果初步表明,菲、芘胁迫引起植物体内解毒代谢和抗氧化防御酶反应。菲、芘单一胁迫浓度为1mgkg-1时对细胞色素P450产生显著诱导;4mgkg-1时P450酶含量明显被抑制,表明低浓度菲、芘单一胁迫对植物代谢解毒系统产生损伤;而菲、芘复合1mgkg-1时P450酶含量明显被抑制,说明菲、芘复合胁迫对植物的代谢解毒具有协同毒性效应。土壤中菲、芘单一胁迫未引起SOD酶活性的明显改变,复合胁迫下SOD酶活性出现微弱下降;菲、芘单一胁迫对CAT和POD酶活性具有显著抑制作用;复合胁迫对CAT产生抑制作用,而POD酶活性并未对菲、芘复合产生增强毒性响应。研究从代谢解毒和抗氧化防御酶系统两方面,为土壤低浓度PAHs污染诊断提供了实验依据。
Resumo:
By using ethylenediamine as both an alkali and ligand, quantum size SnO2, nanocrystallites were synthesized with a solvothermal route. The transmission electron micrographs (TEM) were employed to characterize the morphologies of the products. The crystal sizes of the as-synthesized SnO2 were ranged form 2.5 to 3.6 nm. The crystal structure and optical properties of the products were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, optical absorption spectra, photoluminescence and Raman spectra.
Resumo:
Colloidal gold was prepared by UV light irradiation of the mixture of HAuCl4 aqueous solution and poly(vinyl pyrrolidone) (PVP) ethanol solution in the presence of silver ions. The resulting sheet-like nanoparticles were found to self-assemble into nanoflowers by a centrifuging process. The results of control experiments reflected that only suitable size sheet-like nanoparticles could assemble into the flower-like structures. The presence of Ag ions and PVP are essential for the formation process of nanoflowers.
Resumo:
Triplex helical formation has been the focus of considerable interest because of possible applications in developing new molecular biology tools as well as therapeutic agents and the possible relevance of H-DNA structures in biology system. We report here that a small-molecule anticancer agent, coralyne, has binding preference to the less stable protonated triplex d(C+-T)(6):d(A-G)(6).d(C-T)(6) over duplex d(A-G)(6).d(C-T)(6) and shows different spectral and electrochemical characteristics when binding to triplex and duplex DNA, indicating that electrochemical technique can detect the less stable protonated triplex formation.
Resumo:
Ti45Zr35Ni17Cu3 amorphous and single icosahedral quasicrystalline powders were synthesized by mechanical alloying and subsequent annealing at 855 K. Microstructure and electrochemical properties of two alloy electrodes were characterized. When the temperature was enhanced from 303 to 343 K, the maximum discharge capacities increased from 86 to 329 mAh g(-1) and 76 to 312 mAh g(-1) for the amorphous and quasicrystalline alloy electrodes, respectively. Discharge capacities of two electrodes decrease distinctly with increasing cycle number. The I-phase is stable during charge/discharge cycles, and the main factors for its discharge capacity loss are the increase of the charge-transfer resistance and the pulverization of alloy particles. Besides the factors mentioned above, the formation of TiH2 and ZrH2 hydrides is another primary reason for the discharge capacity loss of the amorphous alloy electrode.
Resumo:
XAFS (EXAFS and XANES) at Eu-L-3 edge were used to determine the local structure and the valences of europium in CaBPO5:Eu prepared in air. The results of EXAFS showed that the doped europium atoms were nine-coordinated by oxygen atoms and the distances of bond Eu-O were 2.39 Angstrom in the host lattice. XANES at Eu-L-3 edge exhibited that Eu2+ and Eu3+ coexisted in the matrix. The luminescent spectrum of the material excited by VUV at 147 nm presented a similar spectrum with that excited by f-f transition of Eu2+ at 396 nm and f-d transition of Eu2+ at 312 nm. The broad emission band due to both 4f(6)5d - 4f(7) transition of EU2+ and f - f transition of Eu3+ could be observed in emission spectra, which indicated that the trivalent europium ions were reduced in air in the matrix at high temperature by the defects [V-Cn]" formed by aliovalent substitution between Ca2+ and Eu3+ ions. The UV excitation spectrum showed the typical f-f transition of Eu3+ and f-d transition of Eu2+. The bands with the maxima at about 113 and 158 nm in VUV excitation spectrum were assigned to originate from the absorption of the host lattice.
Resumo:
Using the Bridgeman-Stockbarger method, the KMgF3:EU2+ single crystal was grown. The color centers in unirradiated KMgF3:Eu crystal were studied. By thermal annealing, we confirmed the 422-nm emission resulted from color centers and oxygen centers, and we proved the energy transfer from EU2+ to color centers. From spectra, the relative oxygen content in crystal was calculated, and the relationships of oxygen displacing fluorine were studied.