163 resultados para 3D-route
Resumo:
The self-assembly of oligo(o-phenylenediamine) (OPD) into 1-D nanostructures on a macroscopic length scale was found when they were transferred from N-methyl pyrrolidone to deionized water. Field emission scanning electron microscopy and confocal fluorescence microscopy were used to investigate the morphology of the precipitates. Results showed that large amounts of OPD 1-D supertructures could be obtained through the simple reprecipitation route, and the length of the fibers could be tuned from microscale to macroscale by adjusting the ratio of two solvents. X-ray diffraction patterns and UV-vis spectra revealed that pi-pi interactions between OPD molecules that facilitated the formation of 1-D structures became predominant when they were transferred from a good solvent to a bad one. Accordingly, a possible formation mechanism was proposed.
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies, and dipole moments of the title molecules in neutral, positively, and negatively charged ions were studied using the density functional method. Ground state was assigned for each species. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides an ionic component, covalent bonds are formed between the metal s, d orbitals and the silicon 3p orbital. The covalent character increases from ScSi (YSi) to NiSi (PdSi) for 3d (4d) metal monosilicides, then decreases. For 5d metal monosilicides, the covalent character increases from LaSi to OsSi, then decreases. For the dissociation of cations, the dissociation channel depends on the magnitude of the ionization potential between metal and silicon. If the ionization potential of the metal is smaller than that of silicon, channel MSi+-> M++Si is favored. Otherwise, MSi+-> M+Si+ will be favored. A similar behavior was observed for anions, in which the dissociation channel depends on the magnitude of electron affinity.
Resumo:
Novel spherical three-dimensional (3D) dendritic gold-polypyrrole nanocomposites were successfully prepared in the presence of an amphiphilic p-toluene sulfonic acid (TSA) as dopant and surfactant via a self-assembly process which is based on the oxidation of pyrrole (Py) and the reduction of the chloroaurate ions, yielding PPy and Au(0) simultaneously. It was found that the probability of obtaining dendritic Au@PPy/TSA nanostructures depended on the concentration of TSA and the rate of addition of the oxidant (HAuCl4), It was also proposed that the supramolecular micelles formed by Py and TSA play the role of a 'soft template' to produce the dendritic Au@PPy/TSA nanocomposites.
Resumo:
Poly(propylene carbonate) (PPC) with number average molecular weight (M-n) higher than 200 kg/mol was prepared via the terpolymerization of carbon dioxide, propylene oxide and diepoxide using Y(CCl3OO)(3)-ZnEt2-glycerine coordination catalyst. When equimolar ZnEt2 and diepoxide were used, double propagation active species were generated in situ by nucleophilic attack of metal alkoxide on diepoxide, leading to PPC of doubled M-n value. The molecular weight of PPC has dramatic influence on its thermal and mechanical performances. PPC with M of 227 kg/mol showed modulus of 6900 MPa, while the modulus of PPC with M-n of 109 kg/mol was only 4300 MPa. Moreover, when M-n increased from 109 to 227 kg/mol, a 37 degrees C increase of the onset degradation temperature was observed.
Resumo:
In this article, we firstly reported on the synthesis and characterization of ultratine CeF3 nanoparticles (NPs) modified by catanionic surfactant via a reverse micelles-based route. The catanionic surfactant PN was prepared by mixing the di(2-ethylhexyl) phosphoric acid (DEHPA) and primary amine (N1923) with 1:1 molar ratio. It exhibited a high surface activity and formed much small reverse micelles in comparison with its individual component (DEHPA or N1923). The PN reverse micelles were then used as templates to prepare ultrafine CeF3 NPs. The narrow distributed nanoparticles have an average diameter 1.8 nm. FTIR spectra indicated that there existed strong chemical interactions between nanoparticles and the adsorbed surfactants. The modification resulted in the FFIR peak position of P=O shifting to lower energy. Due to the effect of modification and small size, the CeF3 NPs showed a remarkable red shift of 54 mn in the fluorescence emission in comparison with that of bulk material and a red shift of 18 nm in contrast with that of the normal CeF3 NPs with an average diameter of 16 nm.
Resumo:
The size- and shape-controlled CdSe and CdTe nanocrystals, which exhibit obvious quantum confinement effect, have been synthesized by a solvothermal route. It is found that initial precursor concentrations are key factors in controlling the shape of the resulting nanocrystals. Moreover, the obtained nanocrystals are all of zinc blende structure, regardless of their sizes and shapes. A possible mechanism for the formation and growth of the nanocrystals is put forward. It is inferred that the adhesion and subsequent recrystallization of nanocrystals with an assistance of remaining monomers should be a major reason for formation and growth of the elongated nanocrystals.
Resumo:
A multi-component substitution of Co and Ni was incorporated into ZnTiO3 to form pure hexagonal Zn1-x(Co1/2Ni1/2)xTiO(3) (x = 0,0.8,0.9,1.0) dielectric ceramic powders by a modified sol-gel route, following heat treatments at 600 degrees C for 3 h and at 800 degrees C for 6 h. Differential scanning calorimetry measurements revealed that the order of increasing thermal stability of solid solution compound Zn1-x(Co1/2Ni1/2)(x)TiO3 was ZnTiO3 (945 degrees C), Zn0.1Ni0.9TiO3 (1346 degrees C), Zn-0.1(Co1/2Ni1/2)(0.9)TiO3 (1390 degrees C), and Zn0.1Co0.9TiO3 (> 1400 degrees C). Both the dielectric constant and loss tangent reached a maximum at x = 0.8 and then decreased with solubility, x, and measurement frequency.
Resumo:
The single-phase double perovskites Sr2MWO6 (M=Co, Ni) were prepared by sol-gel method. Crystal Structure, magnetic properties and the morphology of Sr2CoWO6 and Sr2NiWO6 were investigated. X-ray powder diffraction (XRD) analysis shows single phase structure for Sr2MWO6 (M=Co, Ni) without any traces of impurities and the crystal structure of all the samples belongs to the tetragonal I4/m space group. SEM image for Sr2MWO6 (M=Co, Ni) indicate that the grains are homogeneous and connect each other very well. The Neel temperature for Sr2CoWO6 and Sr2NiWO6 are 23 K and 59 K, respectively. Magnetic measurements showed that the magnetic moment in these double perovskites originates mainly from the interactions between Ni ions and Co ions.
Resumo:
A super-hydrophobic surface was obtained on a three-dimensional (313) polyvinylidene fluoride (PVDF) macroporous film. The porous films were fabricated through self-assembled silica colloidal templates. The apparent water contact angle of the surface can be tuned from 106 degrees to 153 degrees through altering the sintering temperature and the diameter of the colloidal templates. A composite structure of micro-cavities and nanoholes on the PVDF surface was responsible for the super-hydrophobicity. The wettability of the porous surfaces was described by the use of the Cassie-Baxter model and Wenzel's equation.
Resumo:
Polyelectrolytes have been widely used as building blocks for the creation of thickness-controllable multilayer thin films in a layer-by-layer fashion, and also been used as flocculants or stabilizer of colloids. This paper reports novel finding that a kind of polyelectrolyte, polyamines, can facilely induce HAuCl4 to spontaneously form well-stabilized gold nanoparticles without the additional step of introducing a reducing reagent during the elevation of temperature, even at room temperature in some cases. The polymer chain-confined microenvironment and the acid-induced evolution of amide of such kind of polyelectrolyte solution play an important role in the nucleation and growth of gold nanoparticles. This method would not only be helpful to gain an insight into the formation of gold nanoparticles in polyelectrolyte systems, but also provide a novel and facile one-step polyelectrolyte-based synthetic route to polyelectrolyte protected gold nanoparticles in aqueous media for potential applications. More importantly, this strategy will be general to the preparation of other nanoparticles.
Resumo:
Siliceous mesostructured cellular foam with three-dimensional (3D) wormhole structure (MSU-type) is prepared by using triblock copolymer (poly(styrene-b-butadiene-b- styrene), SBS) with both hydrophobic head and tail group as template in strong acid condition via microemulsion method. The effects of SBS addition and temperature on the morphology and physicochemical properties, such as pore diameters, surface areas and pore volumes of the materials have been investigated by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FE-SEM) and nitrogen adsorption-desorption analysis. The results show that the pore volumes, pore sizes and specific surface areas depend strongly on the SBS amount and forming micelles temperature. Moreover, the materials obtained with high wall thickness exhibit a relatively good thermal stability.
Resumo:
Self-assembly of the building block [Cu(oxbe)](-) with Mn(II) led to a novel coordination polymer {[Cu(oxbe)]Mn(H2O)(Cu(oxbe)(DMF)]}(n).nDMF.nH(2)O, where H(3)oxbe is a new dissymmetrical ligand N-benzoato-N'-(2-aminoethyl)-oxamido and DMF = dimethylformamide. The crystal forms in the triclinic system, space group P(1)over-bar, with a = 9.260(4) angstorm, b = 12.833(5) angstrom, c = 15.274(6) angstrom , alpha = 76.18(3)degrees, beta = 82.7(3)degrees, gamma = 82.31(3)degrees, and Z = 2. The crystal structure of the title complex reveals that the two-dimensional bimetallic layers are constructed of (CuMnII)-Mn-II-Cu-II chains linked together by carboxylate bridge and hydrogen bonds help to produce a novel three-dimensional channel-like structure. The magnetic susceptibility measurements (5-300 K) were analyzed by means of the Hamiltonian (H)over-cap = -2J(S)over-cap (Mn)((S)over-cap(Cu1) + (S)over-cap(Cu2)), leading to J = -17.4 cm(-1).
Resumo:
The synthesis, structural characterization and preliminary magnetic studies of a novel coordination polymer with paddlewheel Co-3 clusters are reported firstly. In the polymer, Co-3 clusters are covalently linked through PO4 tetrahedra and 4-pyridinecarboxylate (4-pya) ligands into interpenetrated three-dimensional network.