217 resultados para 335.7
Resumo:
结合密钥扩展算法和划分子集的方法,提出7轮AES-192的不可能差分分析方法.首先估算猜测初始轮的错误密钥的最小概率;然后计算所需的明密文对的数量并选择明密文对,计算密文对的差分,猜测特殊的密钥字节对其进行不可能差分攻击.该攻击需要278选择明文,记忆存储空间为2129分组,以及约2155的7轮AES-192加密.与目前现有的结果相比,该攻击需要更少的选择明文数和较低的时间复杂度.
Resumo:
Lanthanum-zirconium-cerium composite oxide (La-2(Zr0.7Ce0.3)(2)O-7, LZ7C3) coatings were prepared under different conditions by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, surface and cross-sectional morphologies, cyclic oxidation behavior of these coatings were studied. Elemental analysis indicates that the coating composition has partially deviated from the stoichiometry of the ingot, and the existence of excess La2O3 is also observed.
Resumo:
Random multimode lasers are achieved in 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene thin films by introducing silicon dioxide (SiO2) nanoparticles as scatterers. The devices emit a resonance multimode peak at a center wavelength of 640 nm with a mode linewidth less than 0.87 nm. The threshold excitation intensity is as low as 0.25 mJ pulse(-1) cm(-2). It can be seen that the microscopic random resonance cavities can be formed by multiple scattering of SiO2 nanoparticles.
Resumo:
Oxide ceramics with high sintering-resistance above 1473 K have very important applications in thermal barrier coatings (TBCs), catalytic combustion and high-temperature structural materials. Lanthanum zirconate (La2Zr2O7, LZ) is an attractive TBC material which has higher sintering-resistance than yttria stabilized zirconia (YSZ), and this property could be further improved by the proper addition of ceria.
Resumo:
A series of Zn(II) and Cd(II) metal-organic frameworks, namely, [Zn(DFDA)] (1), [Cd(DFDA)(C2H5OH)] (2), [Zn-2(DFDA)(2)(L-1)(2)](2) center dot 3H(2)O (3), [Cd-2(DFDA)(2)(L-1)(2)] (4), [Zn(DFDA)(L-2)] (5), [Cd(DFDA)(L-2)(DMF)] (6), and [Zn(DFDA)(L-3)] (7) (where DFDA = 9,9-dipropylfluorene-2,7-dicarboxylate anion, L-1 = 1,4-bis(imidazol-1-ylmethyl)benzene, L-2 = 1,1'-(1,4-butanediyl) bis(imidazole), L-3 = 2,2'-bipyridine) have been synthesized under hydrothermal conditions and structurally characterized. Compound 1 exhibits a three-dimensional (3D framework containing one-dimensional (1D) Zn(II)-O clusters, with (4(8).6(7)) topology. Compound 2 contains hydrophobic channels built from infinite 1D Cd(II)-O clusters, with (4(8).5(4).6(3)) topology.
Resumo:
The efficient synthesis of (TMS)(2)-[7]helicene (rac-3) and double helicene, a D-2-symmetric dimer of 3,3'-bis(dithieno-[2,3-b:3',2'-d]thiophene) (rac-4) was developed. The crystal structures of 3 and 4 show both strong intermolecular pi-pi interactions and S center dot center dot center dot S interactions. UV/vis spectra reveal that both 3 and 4 show significant pi-electron delocalization.
Resumo:
Synthetic routes to aluminium ethyl complexes supported by chiral tetradentate phenoxyamine (salan-type) ligands [Al(OC6H2(R-6-R-4)CH2)(2){CH3N(C6H10)NCH3}-C2H5] 7: R = H ; 5, 8: R = Cl; 6, 9: R = CH3) are reported. Enantiornerically pure salan ligands 1-3 with (R,R) configurations at their cyclohexane rings afforded the complexes 4, 5, and 6 as mixtures of two diastereoisomers (a and b). Each diastereoisomer a was, as determined by X-ray analysis, monomeric with a five-coordinated aluminium central core in the solid state, adopting a cis-(O,O) and cis-(Me,Me) ligand geometry. From the results of variable-temperature (VT) H-1 NMR in the temperature range of 220-335 K, H-1-H-1 NOESY at 220 K, and diffusion-ordered spectroscopy (DOSY), it is concluded that each diastereoisomer b is also monomeric with a five-coordinated aluminium central core.
Resumo:
The synthesis, thermal and emission properties of an electrophosphorescent platinum(II) metallopolyyne polymer consisting of 9-butylcarbazole-2,7-diyl spacer P1 are described. The optical and electronic properties of P1 are compared to their molecular diplatinum(II) and digold(I) model complexes. The photophysical properties of P1 are somehow analogous to its 2,7-fluorene-linked congener but differs significantly from that for the 3,6-carbazole derivative. Its optical band gap is notably reduced as compared to that for the 3,6-carbazole analog. Multi-layer polymer light-emitting diodes (PLEDs) were fabricated with P1 as the emitting layer which gave a strong green-yellow electrophosphorescence. The best PLED can reach the maximum current efficiency of 4.7 cd . A(-1) at 5 wt.-% doping level, corresponding to an external quantum efficiency of 1.5%. This represents the first literature example of efficient PLEDs exhibiting pure triplet emission under electrical excitation for metallopolyynes without the concomitant singlet emission.
Resumo:
Lanthanide Eu3+ and Tb3+ ions have been widely used in luminescent resonance energy transfer (LRET) for bioassays to study metal binding microenvironments. We report here that Eu3+ or Tb3+ can increase the binding affinity of antitumor antibiotic drug agent, 7-amino actinomycin D (7AACTD), binding to 5'-GT/TG-5' or 5'-GA/AG-5' mismatched stem region of the single-stranded hairpin DNA. Further studies indicate that the effect of Eu3+ or Tb3+ on 7AACTD binding is related to DNA loop sequence. Our results will provide new insights into how metal ions can enhance antitumor agents binding to their targets.
Resumo:
A series of monodisperse oligo(9,9-di-n-octylfluorene-2,7-vinylene)s (OFVs) with fluorene units up to 11 has been synthesized following a divergent approach. Chain length was found to affect not only photophysical properties but also thermal properties. Absorption and photoluminescence spectra are red-shifted with increasing chain length. The effective conjugated length has been extrapolated to be as long as 19 fluorene vinylene units, indicative of a well-conjugated system. With the number of fluorene units > 5, the oligomers exhibit nematic mesomorphism. Glass transition temperature (T-g) and clearing point temperature (T-c) increase with increasing molecular length and with those of OFV11 up to 71 and 230 degrees C, respectively. The oligomers can form uniform films by solution casting for fabrication of light-emitting diodes. With a device structure of ITO/ PEDOT:PSS/OFV11/Ca/Al, a current efficiency of 0.8 cd.A(-1) at a brightness of 1300 cd.m(-2) along with a maximum brightness of 2690 cd.m(-2) have been realized. This performance is notably superior to that of the corresponding polymer.
Resumo:
The structure and electrochemical properties of TiV1.1Mn0.9Nix (x = 0.1-0.7) solid solution electrode alloys have been investigated. It is found that these alloys mainly consist of a solid solution phase with body centered cubic (bcc) structure and a C14 Laves secondary phase. The solid solution alloys show easy activation behavior, high temperature dischargeability, high discharge capacity and favorable high-rate dischargeability as a negative electrode material in Ni-MH battery. The maximum discharge capacity is 502 mAh g(-1) at 303 K when x = 0.4. Electrochemical impedance spectroscopy (EIS) test shows that the charge-transfer resistance at the surface of the alloy electrodes decreases obviously with increasing Ni content.
Resumo:
A novel sulfonated diamine monomer, 1,4-bis(4-aminophenoxy)-naphthyl-2,7-disulfonic acid (BAPNDS), was synthesized. A series of sulfonated polyimide copolymers were prepared from BAPNDS, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and nonsulfonated diamine 4,4'-diaminodiphenyl ether (ODA). Flexible, transparent, and mechanically strong membranes were obtained. The membranes displayed slightly anisotropic membrane swelling. The dimensional change in thickness direction was larger than that in planar. The novel SPI membranes showed higher conductivity, which was comparable or even higher than Nafion 117. Membranes exhibited methanol permeability from 0.24 x 10(-6) to 0.80 X 10(-6) cm(2)/s at room temperature, which was much lower than that of Nafion (2 x 10-6 CM2/s). The copolymers were thermally stable up to 340 degrees C. These preliminary results have proved its potential availability as proton-exchange membrane for PEMFCs or DMFCs.
Resumo:
By incorporating 4,7-diphenyl- 2,1,3 benzothiadiazole instead of 2,1,3-benzothiadiazole into the backbone of polyfluorene, we developed a novel series of green light- emitting polymers with much improved color purity. Compared with the state-of-the-art green light-emitting polymer, poly(fluorene-co-benzothiadiazole) (lambda max = 537 nm), the resulting polymers (lambda(max) = 521 nm) showed 10-20 nm blueshifted electroluminescence (EL) spectra and greatly improved color purity because the insertion of two phenylene units between the 2,1,3-benzothiadiazole unit and the fluorene unit reduced the effective conjugation length in the vicinity of the 2,1,3-benzothiadiazole unit. As a result, the resulting polymers emitted pure green light with CIE coordinates of (0.29, 0.63), which are very close to (0.26, 0.65) of standard green emission demanded by the National Television System Committee (NTSC). Moreover, the insertion of the phenylene unit did not affect the photoluminescence (PL) and EL efficiencies of the resulting polymers. PL quantum efficiency in solid films up to 0.82 was demonstrated. Single-layer devices (ITO/PEDOT/ polymer/Ca/Al) of these polymers exhibited a turn-on voltage of 4.2 V, luminous efficiency of 5.96 cd A(-1) and power efficiency of 2.21 lm W-1. High EL efficiencies and good color purities made these polymers very promising for display applications.