281 resultados para whole rice meal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

基于长期观测资料,众多大气环流模型预测在二十一世纪末大气中二氧化碳浓度将达到700μmolmol'I,地球表面年平均温度也将升高1.5-4.OoC。水稻是亚洲的主要粮食作物,为世界近三分之一的人口提供食物能源。这项工作的目的,是利用人工模拟环境,预测在未来全球气候变化,二氧化碳及温度升高的条件下,水稻的光合生理反应及随之而来的对其产量的影响。本研究是美国环境署( EPA)与国际水稻研究所(IRRI)合作研究项目“Effects of UV-B and Global Climate Change on Rice”的一部分. 在这项研究中,采用了特殊设计并直接建立在水稻田间的开顶式气室(open-top chambers)。在此之前还没有这样大规模的在水稻主产区的此类模拟研究,水稻在气室中渡过了从萌发到收获的整个生长过程。模拟环境条件有三个浓度的二氧化碳(包括现有大气浓度,在此基础上升高200及300 μmolmol-l)和两个温度(即:现有大气温度及升高4度)共六个处理。供试水稻品种四个:IR72,IR65598-112-2,IR65600-42-5-2-BSI-313和N22。在实验中我们发现,水稻品种(如:1R72)单叶光合速率(以二氧化碳气体交换速率计)受二氧化碳浓度促进,在水稻营养生长期,二氧化碳及温度对其光合有协同促进作用.然而,随着花期的到来,在高温条件下,叶片光合能力(photosynthetic capacity)下降,出现光合适应现象(Photosynthetic acclirnation).水稻群体光合作用同样受到二氧化碳浓度促进,但在后期(Grain fill stage)这种促进作用消失;在高浓度二氧化碳下生长的大多数水稻品种的叶片中有较多的碳水化和物(可溶性糖和淀粉)积累.耐高温品种N22叶片中淀粉积累较少:叶片中氮素含量降低,同时发现Rubisco总活性相应降低,这与NCi曲线所示光合效率降低相吻合;通过叶片叶绿素荧光动力学测定,没有发现光系统光能转化效率的变化;水稻籽粒产量随二氧化碳浓度升高而增加,但温度升高使产量降低12.8-36.8%;不同品种对二氧化碳浓度的反应没有显著差别;在高温条件下,耐高温品生长在高二氧化碳浓度下表现良好。 本文系统地研究了水稻光合作用在二氧化碳及温度条件影响下,对二氧化碳浓度及光强变化的反应曲线,初次对水稻单叶与群体光合对二氧化碳浓度变化的反应做了实验性对比;讨论了温度升高对水稻在高浓度二氧化碳下发生光合适应的影响,对光合适应现象的可能机制做了探讨,并提出对未来大气二氧化碳浓度及温度升高条件下水稻适应品种筛选的可能方向。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitochondrial DNA of the rice frog, Fejervarya limnocharis (Amphibia, Anura), was obtained using long-and-accurate polymerase chain reaction (LA-PCR) combining with subcloning method. The complete nucleotide sequence (17,717 bp) of mitochondrial genome was determined subsequently. This mitochondrial genome is characterized by four distinctive features: the translocation of ND5 gene, a cluster of rearranged tRNA genes (tRNA(Thr), tRNA(Pro), tRNA(Leu) ((CUN))) a tandem duplication of tRNA(Mer) gene, and eight large 89-bp tandem repeats in the control region, as well as three short noncoding regions containing two repeated motifs existing in the gene cluster of ND5/tRNA(Thr)/tRNA(Pro)/tRNA(Leu)/tRNA(Phe). The tandem duplication of gene regions followed by deletions of supernumerary genes can be invoked to explain the shuffling of tRNAM(Met) and a cluster of tRNA and ND5 genes, as observed in this study. Both ND5 gene translocation and tandem duplication of tRNA(Met) were first observed in the vertebrate mitochondrial genomes. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The emergence of agriculture about 10,000 years ago marks a dramatic change in human evolutionary history. The diet shift in agriculture societies might have a great impact on the genetic makeup of Neolithic human populations. The regionally restricted enrichment of the class I alcohol dehydrogenase sequence polymorphism (ADH1BArg47His) in southern China and the adjacent areas suggests Darwinian positive selection on this genetic locus during Neolithic time though the driving force is yet to be disclosed. Results: We studied a total of 38 populations (2,275 individuals) including Han Chinese, Tibetan and other ethnic populations across China. The geographic distribution of the ADH1B*47His allele in these populations indicates a clear east-to-west cline, and it is dominant in south-eastern populations but rare in Tibetan populations. The molecular dating suggests that the emergence of the ADH1B*47His allele occurred about 10,000 similar to 7,000 years ago. Conclusion: We present genetic evidence of selection on the ADH1BArg47His polymorphism caused by the emergence and expansion of rice domestication in East Asia. The geographic distribution of the ADH1B*47His allele in East Asia is consistent with the unearthed culture relic sites of rice domestication in China. The estimated origin time of ADH1B*47His allele in those populations coincides with the time of origin and expansion of Neolithic agriculture in southern China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human genome project has been recently complemented by whole-genome assessment sequence of 32 mammals and 24 nonmammalian vertebrate species suitable for comparative genomic analyses. Here we anticipate a precipitous drop in costs and increase in sequ

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped superscaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000 - 40,000. Only 2% - 3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism ( SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene duplication has been considered the most important way of generating genetic novelties. The subsequent evolution right after gene duplication is critical for new function to occur. Here we analyzed the evolutionary pattern for a recently duplicated s

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria are essential for cellular energy production in most eukaryotic organisms. However, when glucose is abundant, yeast species that underwent whole-genome duplication (WGD) mostly conduct fermentation even under aerobic conditions, and most can

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies have indicated that a pair of duplicate genes was often sub-functionalized from their ancestral functions held by the parental genes. We previously demonstrated that the rice cell-wall invertase (CWI) gene GIF1 that plays an important role in the grain-filling process was most likely subjected to domestication selection in the promoter region. Here, we report that GIF1 and another CWI gene OsCIN1 constitute a pair of duplicate genes with differentiated expression and function through independent selection. Results: Through synteny analysis, we show that GIF1 and another cell-wall invertase gene OsCIN1 were paralogues derived from a segmental duplication originated during genome duplication of grasses. Results based on analyses of population genetics and gene phylogenetic tree of 25 cultivars and 25 wild rice sequences demonstrated that OsCIN1 was also artificially selected during rice domestication with a fixed mutation in the coding region, in contrast to GIF1 that was selected in the promoter region. GIF1 and OsCIN1 have evolved into different expression patterns and probable different kinetics parameters of enzymatic activity with the latter displaying less enzymatic activity. Overexpression of GIF1 and OsCIN1 also resulted in different phenotypes, suggesting that OsCIN1 might regulate other unrecognized biological process. Conclusion: How gene duplication and divergence contribute to genetic novelty and morphological adaptation has been an interesting issue to geneticists and biologists. Our discovery that the duplicated pair of GIF1 and OsCIN1 has experiencedsub-functionalization implies that selection could act independently on each duplicate towards different functional specificity, which provides a vivid example for evolution of genetic novelties in a model crop. Our results also further support the established hypothesis that gene duplication with sub-functionalization could be one solution for genetic adaptive conflict.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the dynamics of eukaryotic transcriptome is essential for studying the complexity of transcriptional regulation and its impact on phenotype. However, comprehensive studies of transcriptomes at single base resolution are rare, even for modern organisms, and lacking for rice. Here, we present the first transcriptome atlas for eight organs of cultivated rice. Using high-throughput paired-end RNA-seq, we unambiguously detected transcripts expressing at an extremely low level, as well as a substantial number of novel transcripts, exons, and untranslated regions. An analysis of alternative splicing in the rice transcriptome revealed that alternative cis-splicing occurred in similar to 33% of all rice genes. This is far more than previously reported. In addition, we also identified 234 putative chimeric transcripts that seem to be produced by trans-splicing, indicating that transcript fusion events are more common than expected. In-depth analysis revealed a multitude of fusion transcripts that might be by-products of alternative splicing. Validation and chimeric transcript structural analysis provided evidence that some of these transcripts are likely to be functional in the cell. Taken together, our data provide extensive evidence that transcriptional regulation in rice is vastly more complex than previously believed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long term potentiation in hippocampus, evoked by high-frequency stimulation, is mediated by two major glutamate receptor subtypes, alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate receptors and N-methyl-D-aspartate receptors. Receptor subunit compos