211 resultados para the crack extension rate
Resumo:
We report large scale molecular dynamics simulations of dynamic cyclic uniaxial tensile deformation of pure, fully dense nanocrystalline Ni, to reveal the crack initiation, and consequently intergranular fracture is the result of coalescence of nanovoids by breaking atomic bonds at grain boundaries and triple junctions. The results indicate that the brittle fracture behavior accounts for the transition from plastic deformation governed by dislocation to one that is grain-boundary dominant when the grain size reduces to the nanoscale. The grain-boundary mediated plasticity is also manifested by the new grain formation and growth induced by stress-assisted grain-boundary diffusion observed in this work. This work illustrates that grain-boundary decohesion is one of the fundamental deformation mechanisms in nanocrystalline Ni.
Resumo:
A set of hypersingular integral equations of a three-dimensional finite elastic solid with an embedded planar crack subjected to arbitrary loads is derived. Then a new numerical method for these equations is proposed by using the boundary element method combined with the finite-part integral method. According to the analytical theory of the hypersingular integral equations of planar crack problems, the square root models of the displacement discontinuities in elements near the crack front are applied, and thus the stress intensity factors can be directly calculated from these. Finally, the stress intensity factor solutions to several typical planar crack problems in a finite body are evaluated.
Resumo:
A molecular dynamics method is used to analyze the dynamic propagation of an atomistic crack tip. The simulation shows that the crack propagates at a relatively constant global velocity which is well below the Rayleigh wave velocity. However the local propagation velocity oscillates violently, and it is limited by the longitudinal wave velocity. The crack velocity oscillation is caused by a repeated process of crack tip blunting and sharpening. When the crack tip opening displacement exceeds a certain critical value, a lattice instability takes place and results in dislocation emissions from the crack tip. Based on this concept, a criterion for dislocation emission from a moving crack tip is proposed. The simulation also identifies the emitted dislocation as a source for microcrack nucleation. A simple method is used to examine this nucleation process. (C) 1996 American Institute of Physics.
Resumo:
A new mechanics model based on Peierls concept is presented in this paper, which can clearly characterize the intrinsic features near a tip of an interfacial crack. The stress and displacement fields are calculated under general combined tensile and shear loadings. The near tip stress fields show some oscillatory behaviors but without any singularity and the crack faces open completely without any overlapping when remote tensile loading is comparable with remote shear loading. A fracture criterion for predicting interface toughness has been also proposed, which takes into account for the shielding effects of emitted dislocations. The theoretical toughness curve gives excellent prediction, as compared with the existing experiment data.
Resumo:
A complete development for the higher-order asymptotic solutions of the crack tip fields and finite element calculations for mode I loading of hardening materials in plane strain are performed. The results show that in the higher-order asymptotic solution (to the twentieth order), only three coefficients are independent. These coefficients are determined by matching with the finite element solutions carried out in the present paper (our attention is focused on the first five terms of the higher-order asymptotic solution). We obtain an analytic characterization of crack tip fields, which conform very well to the finite element solutions over wide range. A modified two parameter criterion based on the asymptotic solution of five terms is presented. The upper bound and lower bound fracture toughness curves predicted by modified two parameter criterion are given. These two curves agree with most of the experimental data and fully capture the proper trend.
Resumo:
A computer-controlled procedure has been developed for automatic measurement of the crack opening stress S-op during fatigue tests. A crack opening displacement gauge (GOD meter) is used to obtain digital data on the load versus COD curves. Three methods for deriving S-op from the data sets are compared: (1) a slope method, (2) a tangent lines intersecting method, and (3) a tangent point method. The effect of the position of the COD meter with respect to the crack tip on S-op is studied in tests of 2024-T3 specimens. Results of crack growth and S-op are presented for CA loading with an overload, and with an overload followed by an underload.
Resumo:
The dynamic stress intensity factor histories for a half plane crack in an otherwise unbounded elastic body are analyzed. The crack is subjected to a traction distribution consisting of two pairs of suddenly-applied shear point loads, at a distance L away from the crack tip. The exact expression for the combined mode stress intensity factors as the function of time and position along the crack edge is obtained. The method of solution is based on the direct application of integral transforms together with the Wiener-Hopf technique and the Cagniard-de Hoop method, which were previously believed to be inappropriate. Some features of solutions are discussed and the results are displayed in several figures.
Resumo:
The local characteristics of the anti-plane shear stress and strain field are determined for a material where the stress increases linearly with strain up to a limit and then softens nonlinearly. Two unloading models are considered such that the unloading path always returns to the origin while the other assumes the unloading modulus to be that of the initial shear modulus. As the applied shear increases, an unloading zone is found to prevail between a zone in which the material softens and another zone in which the material is linear-elastic even though the crack does not propagate. The divisions of these zones are displayed graphically.
Influence of inertial and thermal effects on the dynamic growth of voids in porous ductile materials
Resumo:
The influence of inertial, thermal and rate - sensitive effects on the void growth at high strain rate in a thermal - viscoplastic solid is investigated by means of a theoretical model presented in the present paper. Numerical analysis of the model suggests that inertial, thermal and rate - sensitive effects are three major factors which greatly influence the behavior of void growth in the high strain rate case. Comparison of the mathematical model proposed in the present work and Johnson's model shows that if the temperature - dependence is considered, material viscosity eta can take the experimentally measured values.
Resumo:
The fracture toughness and fatigue fracture behaviour of carbon-fiber-reinforced modified bismaleimide (BMI) composites have been studied. These composites were found to have higher fracture toughnes, better damage tolerance and longer fatigue life than carbon-fiber composites with epoxy matrices. Delamination is the major mode of failure in fatigue and it is controlled by the properties of the matrix and interface. The improved performance is dire to the presence of thermoplastic particles in the modified BMI matrix which gives rise to enhanced fiber/matrix adhesion and more extensive plastic deformation. The fatigue behaviour also depends on the stacking sequence, with the multidirectional [45/90/-45/0] fiber-reinforced modified BMI composite having a lower crack propagation rate and longer fatigue life than the unidirectional laminate. This arises because of the constraint on the damage processes due to the different fiber orientation in the plies.
Resumo:
The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.
Resumo:
A new method is presented for calculating the values of K-I and K-II in the elasticity solution at the tip of an interface crack. The method is based on an evaluation of the J-integral by the virtual crack extension method. Expressions for calculating K-I and K-II by using the displacements and the stiffness derivative of the finite element solution and asymptotic crack tip displacements are derived. The method is shown to produce very accurate solutions even with coarse element mesh.
Resumo:
In this paper, a constitutive model of elasticity coupled with damage suggested by Lemaitre et al, [1] is used. The macroscopic stress-strain response of the model includes two stages: strain hardening and strain softening. The basic equation is derived for the anti-plane shear problem. Several lowest order asymptotic solutions are obtained, and assembled for the crack-tip fields.
Resumo:
This paper presents an exact analysis for high order asymptotic field of the plane stress crack problem. It has been shown that the second order asymptotic field is not an independent eigen field and should be matched with the elastic strain term of the first order asymptotic field. The second order stress field ahead of the crack tip is quite small compared with the first order stress field. The stress field ahead of crack tip is characterized by the HRR field. Hence the J integral can be used as a criterion for crack initiation.
Resumo:
A HIGHER-ORDER asymptotic analysis of a stationary crack in an elastic power-law hardening material has been carried out for plane strain, Mode 1. The extent to which elasticity affects the near-tip fields is determined by the strain hardening exponent n. Five terms in the asymptotic series for the stresses have been derived for n = 3. However, only three amplitudes can be independently prescribed. These are K1, K2 and K5 corresponding to amplitudes of the first-, second- and fifth-order terms. Four terms in the asymptotic series have been obtained for n = 5, 7 and 10; in these cases, the independent amplitudes are K1, K2 and K4. It is found that appropriate choices of K2 and K4 can reproduce near-tip fields representative of a broad range of crack tip constraints in moderate and low hardening materials. Indeed, fields characterized by distinctly different stress triaxiality levels (established by finite element analysis) have been matched by the asymptotic series. The zone of dominance of the asymptotic series extends over distances of about 10 crack openings ahead of the crack tip encompassing length scales that are microstructurally significant. Furthermore, the higher-order terms collectively describe a spatially uniform hydrostatic stress field (of adjustable magnitude) ahead of the crack. Our results lend support to a suggestion that J and a measure of near-tip stress triaxiality can describe the full range of near-tip states.