128 resultados para self-consistent calculation
Resumo:
Self-assembled InAs nanostructures on (0 0 1) InP substrate have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). It is found that the morphologies and PL properties of InAs nanostructures depend strongly on the growth condition. For the same buffer layer, elongated InAs quantum wires (QWRs) and no isotropic InAs quantum dots (QDs) can be obtained using different growth conditions. At the same time, for InAs quantum dots, PL spectra also show several emission peaks related to different islands size. Theoretical calculation indicated that there are size quantization effects in InAs islands. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembled InAs quantum dots (QDs) have been grown by solid-source molecular beam epitaxy on a (311)B InP substrate. Transmission electron microscopy clearly shows that a high density of smaller InAs islands can be obtained by using such a high index substrate. After introducing a lattice-matched underlying In0.52Al0.24Ga0.24As layer, the InAs QDs are much more uniform in size and form two-dimensional well ordered arrays. The photoluminescence (PL) spectra also confirm that the InAs QDs grown on underlying In0.52Al0.24Ga0.24As have a better quality than those grown in the In0.52Al0.48As matrix. A simple calculation indicates that the redshift of the PL peak energy mainly results from InAs QDs on underlying In0.52Al0.24Ga0.24As of large size. (C) 2001 American Institute of Physics.
Resumo:
Optical properties of InGaAs/GaAs self-organized quantum dots (QDs) structures covered by InxGa1-x As capping layers with different In contents chi ranging from 0. 0 (i.e., GaAs) to 0. 3 were investigated systematically by photoluminescence (PL) measurements. Red-shift of the PL peak energies of the InAs QDs covered by InxGa1-xAs layers with narrower linewidth and less shifts of the PL emissions via variations of the measurement temperatures were observed compared with that covered by GaAs layers. Calculation and structural measurements confirm that the red-shift of the PL peaks are mainly due to strain reduction and suppression of the In/Ga intermixing due to the InxGa1-xAs cover layer, leading to better size uniformity and thus narrowing the PL linewidth of the QDs. 1. 3 mum wavelength emission with very narrow linewidth of only 19. 2 meV at room temperature was successfully obtained from the In0.5Ga0.5As/GaAs QDs covered by the In0.2Ga0.8As layer.
Resumo:
The photoluminescence (PL) of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots has been measured at 15 and 80 K under hydrostatic pressure. The lateral size of the dots ranges from 7 to 62 nm. The emissions from the dots with 26, 52 and 62 nm size have a blue shift under pressure, indicating that these quantum dots have the normal type-I structure with lowest conduction band at the Gamma -valley. However, the PL peak of dots with 7 nm diameter moves to lower energy with increasing pressure. It is a typical character for the X-related transition. Then these small dots have a type-II structure with the X-valley as the lowest conduction level. An envelope-function calculation confirms that the Gamma -like exciton transition energy will rise above the X-like transition energy in the In0.55Al0.45As/Al0.5Ga0.5As structure if the dot size is small enough.
Resumo:
Quantum-confined Stark effects in InAs/GaAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of perpendicular and parallel electric field. In our calculation, the effect of finite offset, valence band mixing, and strain are all taken into account. The results show that the perpendicular electric field weakly affects the electron ground state and hole energy levels. The energy levels are affected strongly by the parallel electric field. For the electron, the energy difference between the ground state and the first excited state decreases as electric field increases. The optical transition energies have clear redshifts in electric field. The theoretical results agree well with the available experimental data. Our calculated results are useful for the application of quantum dots to photoelectric devices. (C) 2000 American Institute of Physics. [S0021-8979(00)11001-7].
Resumo:
The pressure behaviour of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots (QDs) has been studied at 15 K in the pressure range of 0-1.3 GPa. The atomic force microscopy image shows that the QDs have a multi-modal distribution in size. Three emission peaks were observed in the photoluminescence (PL) spectra, corresponding to the different QD families. The measured pressure coefficients are 82, 93 and 98 meV GPa(-1) for QDs with average lateral size of 26, 52 and 62 nm, respectively. The pressure coefficient of small QDs is about 17% smaller than that of bulk In0.55Al0.45As An envelope-function calculation was used to analyse the effect of pressure-induced change of barrier height, effective mass and dot size on the pressure coefficients of QDs. The Gamma-X state mixing was also included in the evaluation of the reduction of the pressure coefficients. The results indicate that both the pressure-induced increase of effective mass and Gamma-X mixing respond to the decrease of pressure coefficients, and the Gamma-X mixing is more important for small dots. The calculated Gamma-X interaction potentials are 15 and 10 meV for QDs with lateral size of 26 and 52 nm, respectively. A type-II alignment for the X conduction band is suggested according to the pressure dependence of the PL intensities. The valence-band offset was then estimated as 0.15 +/- 0.02.
Resumo:
We have investigated the influence of transverse magnetic field B up to 14 T at 1.6 K on the tunneling processes of electric field domains in doped weakly coupled GaAs/AlAs superlattices. Three regimes, i.e, stable field domains, current self-sustained oscillations and averaged field distribution are successively observed with increasing B. The mechanisms of switching-over among these regimes are due to B-induced modification of the dependence of the effective electron drift velocity on electric field. The simulated calculation gives a good agreement with the observed experimental results. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A Sb-mediated growth technique is developed to deposit Ge quantum dots (QDs) of small size, high density, and foe of dislocations. These QDs were grown at low growth temperature by molecular beam epitaxy. The photoluminescence and absorption properties of these Ge QDs suggest an indirect-to-direct conversion, which is in good agreement with a theoretical calculation. (C) 1998 American Institute of Physics. [S0003-6951(98)00420-3].
Resumo:
The photoluminescence (PL) of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots has been measured at 15 and 80 K under hydrostatic pressure. The lateral size of the dots ranges from 7 to 62 nm. The emissions from the dots with 26, 52 and 62 nm size have a blue shift under pressure, indicating that these quantum dots have the normal type-I structure with lowest conduction band at the Gamma -valley. However, the PL peak of dots with 7 nm diameter moves to lower energy with increasing pressure. It is a typical character for the X-related transition. Then these small dots have a type-II structure with the X-valley as the lowest conduction level. An envelope-function calculation confirms that the Gamma -like exciton transition energy will rise above the X-like transition energy in the In0.55Al0.45As/Al0.5Ga0.5As structure if the dot size is small enough.
Resumo:
We have investigated the influence of transverse magnetic field B up to 14 T at 1.6 K on the tunneling processes of electric field domains in doped weakly coupled GaAs/AlAs superlattices. Three regimes, i.e, stable field domains, current self-sustained oscillations and averaged field distribution are successively observed with increasing B. The mechanisms of switching-over among these regimes are due to B-induced modification of the dependence of the effective electron drift velocity on electric field. The simulated calculation gives a good agreement with the observed experimental results. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Based on the relativistic chiral effective field theory, we study the effective mass of the Delta-resonance in medium by investigating the self-energy of the Delta-resonance related to the pi N decay channel in symmetric nuclear matter. We find that the effective mass of Delta-resonance decreases evidently with increasing nuclear density rho. In our calculation, we also consider the influence of the shifts of the nucleon mass, pion mass and its decay constant due to the restoration of chiral symmetry in medium. The results are roughly consistent with the data given by Lawrence Berkeley National Laboratory.
Resumo:
A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed, where the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single-particle Green's function technique. The full consistency of the calculations is achieved that the same effective Lagrangian is adopted for the ground state and the excited states. The negative energy states in the Dirac sea are also included in the single-particle Green's function in the no-sea approximation. The currents from the vector meson and photon exchanges and the Coulomb interaction in RCRPA are treated exactly. The spin-orbit interaction is included naturally in the relativistic frame. Numerical results of the RCRPA are checked with the constrained relativistic mean-field theory. We study the effects of the inconsistency, particularly the currents and Coulomb interaction in various collective multipole excitations.
Resumo:
Accurate three-dimensional time-dependent quantum wave packet calculations for the N+OH reaction on the (3)A' potential energy surface [Guadagnini, Schatz, and Walch, J. Chem. Phys. 102, 774 (1995)] have been carried out. The calculations show for the first time that the initial state-selected reaction probabilities are dominated by resonance structures, and the lifetime of the resonance is generally in the subpicosecond time scale. The calculated reaction cross sections indicate that they are a decreasing function of the translational energy, which is in agreement qualitatively with the quasiclassical trajectory calculations. The rate constants obtained from the quantum mechanical calculations are consistent with the quasiclassical trajectory results and the experimental measurements. (C) 2003 American Institute of Physics.
Resumo:
We studied the self-assembly of polydisperse diblock copolymers under various confined states by Monte Carlo simulation. When the copolymers were confined within two parallel walls, it was found that the ordered strip structures appeared alternately with the increase in wall width. Moreover, the wall width at which the ordered structure appeared tended to increase with an increase in the polydispersity index (PDI). On the other hand, the simulation results showed that the copolymers were likely to form ordered concentric strip structures when they were confined within a circle wall.
Resumo:
The self-assembly of diblock copolymer mixtures (A-b-B/A-b-C or A-b-B/B-b-C mixtures) subjected to cylindrical confinement (two-dimensional confinement) was investigated using a Monte Carlo method. In this study, the boundary surfaces were configured to attract blocks A but repel blocks B and C. Relative to the structures of the individual components, the self-assembled structures of mixtures of the diblock copolymers were more complex and interesting. Under cylindrical confinement, with varying cylinder diameters and interaction energies between the boundary surfaces and the blocks, we observed a variety of interesting morphologies. Upon decreasing the cylinder's diameter, the self-assembled structures of the A(15)B(15)/A(15)C(15) mixtures changed from double-helix/cylinder structures (blocks B and C formed double helices, whereas blocks A formed the outer barrel and inner core) to stacked disk/cylinder structures (blocks B and C formed the stacked disk core, blocks A formed the outer cylindrical barrel), whereas the self-assembled structures of the A(15)B(7)/B7C15 mixtures changed from concentric cylindrical barrel structures to screw/cylinder structures (blocks C formed an inside core winding with helical stripes, whereas blocks A and B formed the outer cylindrical barrels) and then finally to the stacked disk/cylinder structures.