126 resultados para quasi-stationary
Resumo:
A method for the screening and analysis of biologically active compounds in traditional Chinese medicine is proposed. Affinity chromatography using a human serum albumin (HSA) stationary phase was applied to separate and analyze the bioactive compounds from Artemisia capillaris Thunb. Five major peaks and several minor peaks were resolved based on their affinity to HSA, two of them were identified as scoparone (SCO, 6,7-dimethoxycoumarin) and capillarisin (CAP). CAP shows a much higher affinity to HSA than SCO. The effects of acetonitrile concentration, eluent pH, phosphate concentration and temperature on the retention behaviors of several major active components were also investigated, and it was found that hydrophobicity and eluent pH play major roles in changing retention values. The results demonstrate that the affinity chromatography with a HSA stationary phase is an effective way for analyzing and screening biologically active compounds in traditional Chinese medicine. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
High-speed capillary electrochromatography was developed on both short and long packed columns with 2 mu m non-porous ODS as the stationary phase. Factors that affect the analysis time of samples, such as voltage, electrolyte concentration, pH and organic modifier concentration in the mobile phase, were studied systematically. Fast analysis of aromatic compounds within 13 seconds was realized with column efficiency of 573,000 plates/m and a R.S.D.% of the retention times of all components in 8 consecutive injections below 1.0%. which demonstrated the high efficiency and high reproducibility of such a technique. In addition, DNPH derived aldehydes and ketones in both standards and environmental samples were separated with high speed.
Resumo:
Direct enantiomeric separation of all four optical isomers of 2-phenylcyclopropane carboxylate ester was first achieved on each of the three different beta-cyciodextrin chiral stationary phases (CSPs) in GC. Using these CSPs, enantiomeric excess of the products of enantioselective cyclopropanation can be determined directly, conveniently and fast.