162 resultados para quantum molecular dynamics model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of in-medium nucleon-nucleon cross section on the isoscaling parameter a is investigated for two couples of central nuclear reactions Ca-40 + Ca-40 and Ca-60 + Ca-40; Sn-112 + Sn-112 and Sn-124 + Sn-124 within the isospin dependent quantum molecular dynamics. The calculated result shows that the influence of the in-medium nucleon-nucleon cross section on the isoscaling parameter a is mainly determined by the corresponding number of collisions, both for isospin dependent and isospin independent parameterizations. The mechanisms behind the effects of the in-medium nucleon-nucleon cross sections on the alpha are investigated in more details.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We improve the isospin dependent quantum molecular dynamical model by including isospin effects in the Skyrme potential and the momentum dependent interaction to obtain an isospin dependent Skyrme potential and an isospin dependent momentum interaction. We investigate the isospin effects of Skyrme potential and momentum dependent interaction on the isospin fractionation ratio and the dynamical mechanism in intermediate energy heavy ion collisions. It is found that the isospin dependent Skyrme potential and the isospin dependent momentum interaction produce some important isospin effects in the isospin fractionation ratio

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Probing in-medium nucleon-nucleon (NN) cross section sigma(1)(NN)(alpha) in heavy ion collisions has been investigated by means of the isospin-dependent quantum molecular dynamics (IQMD) with the isospin- and momentum- dependent interaction (IMDI(tau)). It is found that there are the very obvious medium effect and the sensitive isospin- dependence of nuclear stopping R on the in-medium NN cross section sigma(1)(NN)(alpha) in the nuclear reactions induced by halo-neutron projectile and the same-mass stable projectile. However, R induced by the neutron-halo projectile is obviously lower than that induced by the corresponding stable projectile. In particular, there is a very obvious dependence of R on the medium effect of sigma(1)(NN)(alpha) in the whole beam energy region for the above two kinds of projectiles. Therefore, the comparison between the results of R's in the reactions induced by the neutron-halo projectile and the corresponding same-mass stable projectile is a more favourable probe for extracting the information of sigma(1)(NN)(alpha) because of adding a new judgement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The medium effect of nucleon-nucleon cross section sigma(med)(NN) (alpha(m)) on the isoscaling parameter a is investigated for two central nuclear reactions Ca-40+Ca-40, Ca-60+Ca-60. within isospin-dependent quantum molecular dynamics at beam energies from 40 to 50 MeV/nucleon. It is found that there is the very obvious medium effects of nucleon-nucleon cross section sigma(med)(NN)(alpha(m)) on the isoscaling parameters a. In this case the isoscaling parameter a is a possible probe of the medium effect of nucleon-nucleon cross section sigma(med)(NN)(alpha(m)) in the heavy ion collisions. The mechanism of the above-mentioned properties is studied and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduced velocity correlation functions of the Intermediate Mass Fragments (IMFs) were measured in the reactions of Ar-36+ Sn-112,Sn-124 at 35MeV/u. The anti-correlation at small reduced velocities is more pronounced in Ar-36+ Sn-124 system than that in Ar-36+ Sn-112 system. The difference of the correlation functions between the two reactions is mainly contributed by the particle pairs with high momenta. A three-body Coulomb repulsive trajectory code (MENEKA) is employed to calculate the emission time scale of IMFs for-the both systems. The time scale is 150fm/c in the Ar-36+ Sn-112 system and 120fm/c in the Ar-36+ Sn-124 system, respectively. A calculation based on an Isospin dependence Quantum Molecular Dynamics code (IQMD) reveals that the emission time spectrum of IMFs is shifted slightly leftwards in Ar-36+ Sn-124 compared with that in the Ar-16+ Sn-112 system, indicating a shorter emission time scale. Correspondingly, the central density of the hot nuclei decreases faster in Ar-36+ Sn-124 than in Ar-36+ Sn-112

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to determine the equation of state in the isospin asymmetrical nuclear interactions, we have found the observables for extracting the information of them within the isospin-dependent quantum molecular dynamics in recent years. The several sensitive probes for extracting the information of the in-medium nucleon-nucleon cross section and the symmetry potential have found; meanwhile, their mechanisms are investigated in more details. The main point in this paper gives the summary for above probes and their outlook in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The medium effect of in-medium nucleon-nucleon cross section sigma(med)(NN) (alpha(m)) on the isoscaling parameter a is investigated for two couples of central nuclear reactions Ca-40 + Ca-48 and Ca-60 + Ca-48; Sn-112 + Sn-112 and Sn-124 + Sn-124 at beam energy region from 40 to 60 MeV/nucleon with isospin dependent quantum molecular dynamics. It is found that there is the obvious medium effect of sigma(med)(NN) (alpha(m)) on the isoscaling parameters alpha. The mechanism for the medium effect of sigma(med)(NN) (alpha(m)) on a is investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Influences of the isospin-dependent in-medium nucleon nucleon cross-section (sigma(iso)(NN) and momentum-dependent interaction (MDI) on the isoscaling parameter a are investigated for two central collisions Ca-40 +Ca-40 and Ca-60+ Ca-60. These collisions are with isospin dependent quantum molecular dynamics in the beam energy region from 40 to 60 MeV/nucleon. The isotope yield ratio R-21 (N, Z) for the above two central collisions depends exponentially on the neutron number N and proton number Z of isotopes, with an isoscaling. In particular, the isospin-dependent (sigma(iso)(NN) and MDI induce an obvious de crease of the isoscaling parameter a. The mechanism of the decreases of a by both sigma(iso)(NN) and MDI are studied respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equilibration and equilibration rates have been measured by colliding Sn nuclei with different isospin asymmetries at beam energies of E/A = 35 MeV. Using the yields of mirror nuclei of Li-7 and Be-7, we have studied the diffusion of isospin asymmetry by combining data from asymmetric Sn-112 + Sn-124 and Sn-124 + Sn-112 collisions with those from symmetric Sn-112 + Sn-112 and Sn-124 + Sn-124 collisions. We use these measurements to probe isospin equilibration in central collisions where nucleon-nucleon collisions are strongly blocked by the Pauli exclusion principle. The results are consistent with transport theoretical calculations that predict a degree of transparency in these collisions, but inconsistent with the emission of intermediate mass fragments by a single chemically equilibrated source. Comparisons with quantum molecular dynamics calculations are consistent with results obtained at higher incident energies that provide constraints on the density dependence of the symmetry energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用距离相关的紧束缚的分子动力学模型(DDTB-MD),通过提取不同温度下的势能、构型、无单位键长涨落平均位移、扩散系数、围绕质心的径向分布等参量,系统的研究了菱形结构和T形结构的Na4、Td结构和D2d结构的Na8,以及Na20的热力学的性质。对于Na4,比较了金属团簇Na4的菱形结构和T形结构两种异构体之间热力学性质的异同。发现在团簇温度升高的过程中,两种异构体都会发生从类固到类液的相变。T形结构的Na4熔点要比菱形结构的低。在相变的过程中都会发生赝转动和异构化。还发现了赝转动的判据不仅仅只是温度,还包括无单位键长涨落的δ值。菱形结构的Na4在200K左右不一定会发生赝转动,只有观察到温度处于200K左右,δ值≥0.08的时候,赝转动则必然会观察到。菱形结构Na4的赝转动过程中会发现T形结构的异构化,但其维持时间很短,不稳定,很快又转变为菱形结构。而T形结构在170K就能观察到异构化和赝转动的发生,在这个温度下会不断的在菱形与T型之间发生异构,而处于菱形结构的时间要比T型长的多。表现为菱形结构的稳定性要大于T型。对于Na8的两种不同的异构体(分别为Td结构和D2d结构),发现尽管两个异构体的基态能量很接近,但他们的稳定性、熔化过程的热力学性质等有着很大的差别,这也反映了它们在几何结构上的差别。对称性强的Td结构更紧密,在熔化过程中表现出更高的稳定性,具有较高的熔点,具有类晶体的性质.对称性弱的D2d结构则具有较低的熔点,很宽的熔化温度范围,具有类似非晶体的性质. 再比较了基态结构下的Na8和Na20。通过提取对不同的子系统在不同温度下的无单位键长涨落等参数,发现金属原子团簇Na20在熔化过程中表现出了并不像通常金属团簇那样的表面先熔化,而是从内部开始先熔化的奇异特性

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of the density functional theory (DFT) within local density approximations (LDA) approach, we calculate the band gaps for different size SnO2 quantum wire (QWs) and quantum dots (QDs). A model is proposed to passivate the surface atoms of SnO2 QWs and QDs. We find that the band gap increases between QWs and bulk evolve as Delta E-g(wire) = 1.74/d(1.20) as the effective diameter d decreases, while being Delta E-g(dot) = 2.84/d(1.26) for the QDs. Though the similar to d(1.2) scale is significantly different from similar to d(2) of the effective mass result, the ratio of band gap increases between SnO2 QWs and QDs is 0.609, very close to the effective mass prediction. We also confirm, although the LDS calculations underestimate the band gap, that they give the trend of band gap shift as much as that obtained by the hybrid functional (PBE0) with a rational mixing of 25% Fock exchange and 75% of the conventional Perdew-Burke-Ernzerhof (PBE) exchange functional for the SnO2 QWs and QDs. The relative deviation of the LDA calculated band gap difference Lambda E-g compared with the corresponding PBE0 results is only within 5%. Additionally, it is found the states of valence band maximum (VBM) and conduction band minimum (CBM) of SnO2 QWs or QDs have a mostly p- and s-like envelope function symmetry, respectively, from both LDA and PBE0 calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical model for size-dependent interface phonon transmission and thermal conductivity of nanolaminates is derived based on the improved acoustic mismatch theory and the Lindemann melting theory by considering the size effect of phonon velocity and the interface lattice mismatch effect. The model suggests that the interface phonon transmission is dominant for the cross-plane thermal conductivity of nanolaminates and superlattices, and the intrinsic variety of size effect of thermal conductivity for different systems is proposed based on the competition mechanism of size effect of phonon transport between two materials constituting the interfaces. The model's prediction for thermal conductivity of nanolaminates agrees with the experimental results. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic coupling model is developed for a hybrid atomistic-continuum computation in micro- and nano-fluidics. In the hybrid atomistic-continuum computation, a molecular dynamics (MD) simulation is utilized in one region where the continuum assumption breaks down and the Navier-Stokes (NS) equations are used in another region where the continuum assumption holds. In the overlapping part of these two regions, a constrained particle dynamics is needed to couple the MD simulation and the NS equations. The currently existing coupling models for the constrained particle dynamics have a coupling parameter, which has to be empirically determined. In the present work, a novel dynamic coupling model is introduced where the coupling parameter can be calculated as the computation progresses rather than inputing a priori. The dynamic coupling model is based on the momentum constraint and exhibits a correct relaxation rate. The results from the hybrid simulation on the Couette flow and the Stokes flow are in good agreement with the data from the full MD simulation and the solutions of the NS equations, respectively. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a unified model for dislocation nucleation, emission and dislocation free zone is proposed based on the Peierls framework. Three regions are identified ahead of the crack tip. The emitted dislocations, located away from the crack tip in the form of an inverse pileup, define the plastic zone. Between that zone and the cohesive zone immediately ahead of the crack tip, there is a dislocation free zone. With the stress field and the dislocation density field in the cohesive zone and plastic zone being, respectively, expressed in the first and second Chebyshev polynomial series, and the opening and slip displacements in trigonometric series, a set of nonlinear algebraic equations can be obtained and solved with the Newton-Raphson Method. The results of calculations for pure shearing and combined tension and shear loading after dislocation emission are given in detail. An approximate treatment of the dynamic effects of the dislocation emission is also developed in this paper, and the calculation results are in good agreement with those of molecular dynamics simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the dependence of the thermal conductivity kappa on the strength of the interparticle potential lambda and the strength of the external potential beta in the Frenkel-Kontorova model. We found that the functional relation can be expressed in a scaling form, kappa(proportional to) lambda 3/2/beta(2 center dot). This result is first obtained by nonequilibrium molecular dynamics. It is then confirmed by two analytical methods, the self-consistent phonon theory and the self-consistent stochastic reservoirs method. The thermal conductivity kappa is therefore a decreasing functon of beta and an increasing function of lambda.