127 resultados para physical and mechanical tests


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modification of high-impact polystyrene (HIPS) was accomplished by melt-grafting glycidyl methacrylate (GMA) on its molecular chains. Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis were used to characterize the formation of HIPS-g-GMA copolymers. The content of GMA in HIPS-g-GMA copolymer was determined by using the titration method. The effect of the concentrations of GMA and dicumyl peroxide on the degree of grafting was studied. A total of 1.9% of GMA can be grafted on HIPS. HIPS-g-GNU was used to prepare binary blends with poly(buthylene terephthalate) (PBT), and the evidence of reactions between the grafting copolymer and PBT in the blends was confirmed by scanning electron microscopy (SEM), dynamic mechanical analysis, and its mechanical properties. The SEM result showed that the domain size in PBT/HIPS-g-GMA blends was reduced significantly compared with that in PBT/HIPS blends; moreover, the improved strength was measured in PBT/HIPS-g-GMA blends and results from good interfacial adhesion. The reaction between ester groups of PBT and epoxy groups of HIPS-g-GMA can depress crystallinity and the crystal perfection of PBT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A poly(butylene terephthalate) (PBT)/linear low-density polyethylene (LLDPE) alloy was prepared with a reactive extrusion method, For improved compatibility of the blending system, LLDPE grafted with acrylic acid (LLDPE-g-AA) by radiation was adopted in place of plain LLDPE. The toughness and extensibility of the PBT/LLDPE-g-AA blends, as characterized by the impact strengths and elongations at break, were much improved in comparison with the toughness and extensibility of the PBT/LLDPE blends at the same compositions. However, there was not much difference in their tensile (or flexural) strengths and moduli. Scanning electron microscopy photographs showed that the domains of PBT/LLDPE-g-AA were much smaller and their dispersions were more homogeneous than the domains and dispersions of the PBT/ T,T PE blends. Compared with the related values of the PBT/LLDPE blends, the contents and melting temperatures of the usual spherulites of PBT in PBT/LLDPE-g-AA decreased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning probe microscopy was used to simultaneously determine the molecular chain structure and intrinsic mechanical properties, including anisotropic elastic modulus and friction, for lamellae of highly oriented high-density polyethylene (HDPE) obtained by the melt-drawn method. The molecular-scale image of the highly oriented lamellae by friction force microscopy (FFM) clearly shows that the molecular chains are aligned parallel to the drawing direction, and the periodicities along and perpendicular to the drawing direction are 0.26 and 0.50 nm, respectively. The results indicate that the exposed planes of the lamellae resulting from the melt-drawn method are (200), which is consistent with results of transmission electron microscopy and electron diffraction. Because of the high degree of anisotropy in the sample, coming from alignment of the molecular chains along the drawing direction, the measured friction force, F, determined by FFM is strongly dependent on the angle, theta, between the scanning direction and the chain axis. The force increases as theta is increased from 0 degrees (i.e., parallel to the chain axis) to 90 degrees (i.e., perpendicular to the chain axis). The structural anisotropy was also found to strongly influence the measurements of the transverse chain modulus of the polymer by the nanoindentation technique. The measured value of 13.8 GPa with transverse modulus was larger than the value 4.3 GPa determined by wide-angle X-ray diffraction, which we attributed to anisotropic deformation of the lamellae during nanoindentation measurements that was not accounted for by the elastic treatment we adopted from Oliver and Pharr. The present approach using scanning probe microscopy has the advantage that direct correlations between the nanostructure, nanotribology, and nanomechanical properties of oriented samples can be determined simultaneously and simply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binary blends of polyamide 1010 (PA1010) with the high-impact polystyrene (HIPS)/maleic anhydride (MA) graft copolymer (HIPS-g-MA) and with HIPS were prepared using a wide composition range. Different blend morphologies were observed by scanning electron microscopy according to the nature and content of PA1010 used. Compared with the PA1010/HIPS binary blends, the domain sizes of dispersed-phase particles in PA1010/HIPS-g-MA blends were much smaller than that in PA1010/HIPS blends at the same compositions. It was found that the tensile properties of PA1010/HIPS-g-MA blends were obviously better than that of PA 1010/HIPS blends. Wide-angle xray diffraction analyses were performed to confirm that the number of hydrogen bonds in the PA1010 phase decreased in the blends of PA1010/HIPS-g-MA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/HIPS-g-MA blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A functionalized high-density polyethylene (HDPE) with maleic anhydride (MAH) was prepared using a reactive extruding method. This copolymer was used as a compatibilizer of blends of polyamide 6 (PA6) and ultrahigh molecular weight polyethylene (UHMWPE). Morphologies were examined by a scanning electron microscope. It was found that the dimension of UHMWPE and HDPE domains in the PA6 matrix decreased dramatically, compared with that of the uncompatibilized blending system. The size of the UHMWPE domains was reduced from 35 mu m (PA6/UHMWPE, 80/20) to less than 4 mu m (PA6/UHMWPE/HDPE-g-MAH, 80/20/20). The tensile strength and Izod impact strength of PA6/UHMWPE/HDPE-g-MAH (80/20/20) were 1.5 and 1.6 times as high as those of PA6/UHMWPE: (80/20), respectively. This behavior could be attributed to chemical reactions between the anhydride groups of HDPE-g-MAH and the terminal amino groups of PA6 in PA6/UHMWPE/HDPE-g-MAH blends. Thermal analysis was performed to confirm that the above chemical reactions took place during the blending process. (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The toughening effect of the content of a core-shell poly(butyl acrylate)/poly(methyl methacrylate) latex polymer (PBA-cs-PMMA) on the mechanical properties, morphology and compatibility of its blends with polycarbonate(PC), i.e., PC/PBA-cs-PMMa, was studied. The mechanical properties of the blends are strongly affected by varying the content of PBA-cs-PMMA in the blend. When the PBA-cs-PMMA content is only 5 wt.-%, the impact strength of PC/PBA-cs-PMMA is almost 19 times as high as that of pure PC, indicating that PBA-cs-PMMA is a very good impact modifier for PC. With increasing interphacial layer thickness and decreasing interphacial tension, the interphacial activity becomes more and more effective and, at the same time, miscibility increases too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of the compatibilizer polypropylene grafted with glycidyl methacrylate(PP-g-GMA) on the morphology, thermal, rheological and mechanical properties of polypropylene and polycarbonate blends (PP/PC) were studied. It was found that the addition of PP-g-GMA significantly changed their morphology. The mean size of domains reduced from 20 mu m to less than 5 mu m. The dispersed domain size is also strongly dependent upon the content of PP-g-GMA. The interfacial tension of PP/PC/PP-g-GMA (50/30/20) is only about one-tenth of PP/PC (70/30). The crystallization temperature of PP in PP/PC/PP-g-GMA is 5-8 degrees C higher than that of PP in PP/PC blends. Characterization studies based on mechanical properties, differential scanning calorimetry, rheology and morphological evidence obtained by using scanning electron microscopy support the hypothesis that an in-situ copolymer PP-g-PC was formed during the blending process. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphologies and mechanical properties of epoxy resins toughened by hydroxyl-terminated butadiene-acrylonitrile copolymer (HTBN) and cured with hexahydrophthalic anhydride were studied, The results show that the level of HTBN in epoxy resin, content of acrylonitrile in HTBN and curing temperature influence the morphology and then influence the mechanical properties of cured epoxy resin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modification of polypropylene (PP) was accomplished by melt grafting glycidyl methacrylate (GMA) on its molecular chains. The resulting PP-g-GMA was used to prepare binary blends of polyamide 1010 (PA1010) and PP-g-GMA. Different blend morphologies were observed by scanning electron microscopy (SEM) according to the nature and content of PA1010 used. Comparing the PA1010/PP-g-GMA and PA1010/PP binary blends, the size of the domains of PP-g-GMA were much smaller than that of PP at the same compositions. It was found that mechanical properties of PA1010/PP-g-GMA blends were obviously better than that of PA1010/PP blends, and the mechanical properties were significantly influenced by wetting conditions for uncompatibilized and compatibilized blends. A different dependence of the flexural modulus on water was found for PA1010/PP and PA1010/PP-g-GMA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/PP-g-GMA blends. Thermal and rheological analyses were performed to confirm the possible chemical reactions taking place during the blending process. (C) 1997 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modification of ethylene-propylene copolymer (EPM) has been accomplished by melt grafting of maleic anhydride (MAH) molecules promoted by radical initiators. The resulting EPM-g-MAH and EPM have been used to obtain binary nylon 1010/EPM or nylon 1010/EPM-g-MAH blends by melt mixing. It was found that the EPM-g-MAH copolymer used as the second component has a profound effect upon the properties of the resulting blends. This behavior has been attributed to a series of chemical and physicochemical interactions taking place between the two components. The interactions are due to the presence of the anhydride functionality on the copolymer and do not occur when this functionality is absent. The interaction has been confirmed by Fourier-transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and scanning electron microscopic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the effect of compatibilizer on the morphological, thermal, rheological, and mechanical properties of polypropylene/polycarbonate (PP/ PC) blends. The blends, containing between 0 to 30 vol % of polycarbonate and a compatibilizer, were prepared by means of a twin-screw extruder. The compatibilizer was produced by grafting glycidyl methacrylate (GMA) onto polypropylene in the molten state. Blend morphologies were controlled by adding PP-g-GMA as compatibilizer during melt processing, thus changing dispersion and interfacial adhesion of the polycarbonate phase. With PP-g-GMA, volume fractions increased from 2.5 to 20, and much finer dispersions of discrete polycarbonate phase with average domain sizes decreased from 35 to 3 mu m were obtained. The WAXD spectra showed that the crystal structure of neat PP was different from that in blends. The DSC results suggested that the degree of crystallization of PP in blends decreased as PC content and compatibilizer increased. The mechanical properties significantly changed after addition of PP-g-GMA. (C) 1997 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This experimental study examines the role of formulated molecular weight between crosslink sites on the temperature resistance and mechanical properties of composites based on a polyimide containing a diphenyl thioether unit (PTI). The composites are fabricated by in situ polymerization of monomer reactants (PMR) using three monomeric ingredients: bis(3,4-dicarboxyphenyl) sulfide dianhydride (TDPA); 4,4'-methylene dianiline (MDA); and the monomethyl ester of norbornene anhydride (NE). By changing monomeric molar ratio, three formulations are prepared, in which formulated molecular weight between crosslink sites varies from 1487 to 3446 g mol(-1). Unidirectional composite laminates from each formulation and T300 carbon fibres are compression moulded and cut into a series of test specimens. By measuring the glass transition temperature (T-g), Mode I interlaminar fracture toughness (G(IC)) and other mechanical properties at room and elevated temperatures, the influences of formulated molecular weight on the temperature resistance and mechanical properties of PTI-based composites are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible oxyethylene-ether was introduced into the aromatic copolyesters and copoly (ester-amide)s to reduce the melting point of resulting polymers. The melting point was greatly reduced to 200 degrees C or even lower in some cases, and the molecular weight was satisfactorily high as reflected by inherent viscosity. The polymers exhibited high thermal stability and good mechanical properties as determined by TGA and mechanical tests. The copolyester showed better crystallinity and liquid crystallinity than corresponding copoly (ester-amide)s with similar monomer composition as reflected by POM observation and WAXD study. The melting points for both copolyesters and copoly (ester-amide)s showed great dependence on the p-acetoxybenzoic acid (PAB) content in monomer composition and reached the lowest value when PAB was 29 mol%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal and mechanical properties of phenolphthalein polyethersulfone/poly(phenylene sulfide) (PES-C/PPS) blends were studied using a differential scanning calorimeter, a dynamic mechanical analyzer, and mechanical characterization. The morphologies of fracture surfaces were observed by scanning electron microscopy. The blends are multiphase systems with strong interaction between the two phases. It is of interest that, although the strength and ductility of PPS are lower than those of PES-C, the addition of PPS can improve markedly the impact strength of PES-C without changing its higher strength. The PPS can also act as a flow aid for PES-C. (C) 1995 John Wiley and Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jadeite was synthesized from its glass of stoichiometric composition NaAlSi2O6, and a colouring agent Cr2O3 (0.3-0.6 wt%) was added to achieve the emerald colour. The conditions employed were a pressure range of 3.0-5.0 GPa and a temperature range of 1150