183 resultados para nuclear potential energy surface


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We uncover the underlying potential energy landscape for a cellular network. We find that the potential energy landscape of the mitogen-activated protein-kinase signal transduction network is funneled toward the global minimum. The funneled landscape is quite robust against random perturbations. This naturally explains robustness from a physical point of view. The ratio of slope versus roughness of the landscape becomes a quantitative measure of robustness of the network. Funneled landscape is a realization of the Darwinian principle of natural selection at the cellular network level. It provides an optimal criterion for network connections and design. Our approach is general and can be applied to other cellular networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, dissociation energies, electron affinities, ionization potentials and dipole moments of the title molecules in neutral and charged ions were studied by use of density functional method. Ground states for each molecule were assigned. For neutral and cationic molecules, the bond distance decreases from YC (YC+) to RhC (RhC+), then increases, while for anionic molecules, the bond distance decreases from YC- to RuC-, then increases. Opposite trend was observed for vibrational frequency. The bond ionic character decreases from ZrC to PdC for neutral molecules. The bonding patterns are discussed and compared with the available studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All structural geometries of intermediates, transition states and product are, optimized at HF/ LANL2DZ level under the effective core potential approximation. The potential energy profile for some elementary reactions of hydroformylation catalyzed by Co-2(CO)(6)(PH3)(2), consisting of carbonyl insertion, H-2 oxidative addition and aldehyde reductive elimination, are calculated, The transition states are further confirmed by having one and only one imaginary vibrational frequency, The activation energies of carbonyl insertion, H-2 oxidative addition and aldehyde reductive elimination are 54, 02, 134, 02 and 43. 44 kJ/mol, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-empirical molecular orbital calculations using PM3 Hamiltonian were employed to determine qualitative assignments of the vibrational spectrum of zinc phthalocyanine (ZnPc). The assignments are from the potential energy distribution calculations in the normal coordinate analysis and optimized geometry in the PM3 calculations. The structure of the ZnPc molecule is also deduced. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C-2 and LaC2+ were studied using Hartree-Fock(HF), B3LYP (Becke 3-paremeter-Lee-Yang-Parr) density functional method, second-order Moller-Plesset perturbation (MP2) and coupled cluster singles and doubles with non-iterative triples(CCSD(T)) methods. The basis set employed was LANL1DZ. Geometries, vibrational frequencies and other quantities were reported. The results showed that for C-2, all the methods performed well for low spin state (singlet), while only HF and B3LYP remained so for high spin state (triplet). For LaC2+, four isomers were presented and fully optimized. The results suggested that linear isomers with C-infinity v and D-infinity h symmetries were predicted to be saddle points on the energy surface for all the methods, while for isomers with C-2 upsilon and C-s symmetries, they were local minima except C-2 upsilon at B3LYP level, and were isoenergetic at HF, MP2 and CCSD(T) levels, near isoenergetic at B3LYP level. From the differences between HOMO and LUMO, it is also known that the isomers with C-2 upsilon and C-s symmetries offer the largest values and therefore correspond to the most stable structure. For La-C bond lengths, B3LYP gives the shortest, the order is B3LYP

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fundamental aspects of ion/neutral complex as an important intermediate of unimolecular fragmentation in mass spectrometry have been summarized in this review, especially for the classified description of its formations, characteristics, reactions, investigation methods, recent achievements and application. Meanwhile, another kind of proton-bound complex, which is a special type of ion/neutral complex, has been also introduced briefly. Among them, a part of authors' work was included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclization process of a new organosulfur reaction was studied by the MNDO (UHF) method. The first reaction path was assumed to be via the organosulfur radical intermediate, the second via the ionic (cationic and anionic) intermediates. The dehydroxylation process was assumed to occur with the synergistic cyclization. The results obtained indicate that the potential energy barrier of the first reaction path was about 102 kcal mol(-1), and although the formation of the ionic intermediate is comparatively difficult, the potential energy barrier of the second path is comparable to the first. The sequential reaction path via the radical intermediate, i.e. first cyclization, then dehydroxylation, was investigated for comparison. The cyclization reaction was found to be the thermodynamically favored process, while the ensuing dehydroxylation process was found to have a potential energy barrier of about 62 kcal mol(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

采用传统的势场法对机器人进行路径规划时,如果目标位置处在障碍物产生的斥力影响范围内,由于斥力大于引力机器人很难到达目标,为此本文提出了一种改进的势场法。该算法通过机器人向着合势能最小的方向运动完成路径规划。并对目标产生的引力做了进一步的改进,解决了目标不可达问题。同时改进的方法不会增加计算量,保证了算法的实时性。仿真实验证明了机器人能够避开障碍顺利到达目标,验证了改进算法的有效性。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of analyzing the principle and realization of geo-steering drilling system, the key technologies and methods in it are systematically studied in this paper. In order to recognize lithology, distinguish stratum and track reservoirs, the techniques of MWD and data process about natural gamma, resistivity, inductive density and porosity are researched. The methods for pre-processing and standardizing MWD data and for converting geological data in directional and horizontal drilling are discussed, consequently the methods of data conversion between MD and TVD and those of formation description and adjacent well contrast are proposed. Researching the method of identifying sub-layer yields the techniques of single well explanation, multi-well evaluation and oil reservoir description. Using the extremum and variance clustering analysis realizes logging phase analysis and stratum subdivision and explanation, which provides a theoretical method and lays a technical basis for tracing oil reservoirs and achieving geo-steering drilling. Researching the technique for exploring the reservoir top with a holdup section provides a planning method of wellpath control scheme to trace oil and gas reservoir dynamically, which solves the problem of how to control well trajectory on condition that the layer’s TVD is uncertain. The control scheme and planning method of well path for meeting the demands of target hitting, soft landing and continuous steering respectively provide the technological guarantee to land safely and drill successfully for horizontal, extended-reach and multi-target wells. The integrative design and control technologies are researched based on geology, reservoir and drilling considering reservoir disclosing ratio as a primary index, and the methods for planning and control optimum wellpath under multi-target restriction, thus which lets the target wellpath lie the favorite position in oil reservoir during the process of geo-steering drilling. The BHA (bottomhole assembly) mechanical model is discussed using the finite element method, and the BHA design methods are given on the basis of mechanical analyses according to the shape of well trajectory and the characteristics of BHA’s structure and deformation. The methods for predicting the deflection rate of bent housing motors and designing their assemblies are proposed based on the principle of minimum potential energy, which can clearly show the relation between the BHA’s structure parameters and deflection rate, especially the key factors’ effect to the deflection rate. Moreover, the interaction model between bit and formation is discussed through the process of equivalent formation and equivalent bit considering the formation anisotropy and bit anisotropy on the basis of analyzing the influence factors of well trajectory. Accordingly, the inherence relationship among well trajectory, formation, bit and drilling direction is revealed, which lays the theory basis and technique for predicting and controlling well trajectory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large number of catastrophic accidents were aroused by the instability and destruction of anti-dip rock masses in the worldwide engineering projects, such as hydropower station, mine, railways and so on. Problems in relation to deformation and failure about anti-dip rock slopes are significant for engineering geology research. This dissertation takes the Longpan slope in the Jinsha River as a case to study the deformation mechanism of large-scale anti-dip rock masses and the slope stability analysis method. The primary conclusions are as follows. The Dale Reach of Jinsha River, from Longpan to the debouchment of Chongjiang tributary, is located in the southeastern margin of the Qinghai-Tibet Plateau. Longpan slope is the right embankment of Dale dam, it is only 26 km to the Shigu and 18 km to Tiger Leaping Gorge. The areal geology tectonic structures here area are complicated and blurry. Base on the information of geophysical exploration (CSAMT and seismology) and engineering geological investigation, the perdue tectonic pattern of Dale Reach is put forward for the first time in this paper. Due to the reverse slip of Longpan fault and normal left-rotation of Baihanchang fault, the old faulted valley came into being. The thick riverbed sediments have layered characters of different components and corresponding causes, which attribute to the sedimentary environments according with the new tectonic movements such as periodic mountain uplifting in middle Pleistocene. Longpan slope consists of anti-dip alternate sandstone and slate stratums, and the deformable volume is 6.5×107m3 approximately. It was taken for an ancient landslide or toppling failure in the past so that Dale dam became a vexed question. Through the latest field surveying, displacement monitoring and rock masses deforming characters analyses, the geological mechanism is actually a deep-seated gravitational bending deformation. And then the discrete element method is used to simulate the deforming evolution process, the conclusion accords very well with the geo-mechanical patterns analyses. In addition strength reduction method based on DEM is introduced to evaluate the factor of safety of anti-dip rock slope, and in accordance with the expansion way of the shear yielding zones, the progressive shear failure mechanism of large-scale anti-dip rock masses is proposed for the first time. As an embankment or a close reservoir bank to the lower dam, the stability of Longpan slope especially whether or not resulting in sliding with high velocity and activating water waves is a key question for engineering design. In fact it is difficult to decide the unified slip surface of anti-dip rock slope for traditional methods. The author takes the shear yielding zones acquired form the discrete element strength reduction calculation as the potential sliding surface and then evaluates the change of excess pore pressure and factor of stability of the slope generated by rapid drawdown of ponded water. At the same time the dynamic response of the slope under seismic loading is simulated through DEM numerical modeling, the following results are obtained. Firstly the effective effect of seismic inertia force is resulting in accumulation of shear stresses. Secondly the discontinuous structures are crucial to wave transmission. Thirdly the ultimate dynamic response of slope system takes place at the initial period of seismic loading. Lastly but essentially the effect of earthquake load to bringing on deformation and failure of rock slope is the coupling effect of shear stresses and excess pore water pressure accumulation. In view of limitations in searching the critical slip surface of rock slope of the existing domestic and international software for limit equilibrium slope stability analyses, this article proposes a new method named GA-Sarma Algorithm for rock slope stability analyses. Just as its name implies, GA-Sarma Algorithm bases on Genetic Algorithm and Sarma method. GA-Sarma Algorithm assumes the morphology of slip surface to be a broken line with traceability to extend along the discontinuous surface structures, and the slice boundaries is consistent with rock mass discontinuities such as rock layers, faults, cracks, and so on. GA-Sarma Algorithm is revolutionary method that is suitable for global optimization of the critical slip surface for rock slopes. The topics and contents including in this dissertation are closely related to the difficulties in practice, the main conclusions have been authorized by the engineering design institute. The research work is very meaningful and useful for the engineering construction of Longpan hydropower station.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time, we have studied the potential-energy curves, spectroscopic terms, vibrational levels, and the spectroscopic constants of the ground and low-lying excited states of NiI by employing the complete active space self-consistent-field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified six low-lying electronic states of NiI with doublet spin multiplicities, including three states of Delta symmetry and three states of Pi symmetry of the molecule within 15 000 cm(-1). The lowest (2)Delta state is identified as the ground state of NiI, and the lowest (2)Pi state is found at 2174.56 cm(-1) above it. These results fully support the previous conclusion of the observed spectra although our computational energy separation of the two states is obviously larger than that of the experimental values. The present calculations show that the low-lying excited states [13.9] (2)Pi and [14.6] (2)Delta are 3 (2)Pi and 3 (2)Delta electronic states of NiI, respectively. Our computed spectroscopic terms, vibrational levels, and spectroscopic constants for them are in good agreement with the experimental data available at present. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally. (c) 2005 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By calculating the energy distribution of electrons reaching the photocathode surface and solving the Schrodinger equation that describes the behavior of an electron tunneling through the surface potential barrier,we obtain an equation to calculate the emitted electron energy distribution of transmission-mode NEA GaAs photocathodes. Accord- ing to the equation,we study the effect of cathode surface potential barrier on the electron energy distribution and find a significant effect of the barrier-Ⅰ thickness or end height,especially the thickness,on the quantum efficiency of the cath- ode. Barrier Ⅱ has an effect on the electron energy spread, and an increase in the vacuum level will lead to a narrower electron energy spread while sacrificing a certain amount of cathode quantum efficiency. The equation is also used to fit the measured electron energy distribution curve of the transmission-mode cathode and the parameters of the surface barri- er are obtained from the fitting. The theoretical curve is in good agreement with the experimental curve.