148 resultados para nitrogen sources
Resumo:
This paper reports large variations in stable carbon and nitrogen isotope ratios of lake anchovy (Coilia ectenes taihuensis) from Lake Chaohu, China. The lake anchovy exhibited a significant C-13- and N-15- enrichment in relation to increasing fish length, and the isotopic compositions of small lake anchovy (<= 130 mm) were significantly more enriched than those of large lake anchovy (> 130 mm). The significant differences in the isotopic compositions of small and large lake anchovy suggested that their assimilated diets differed over a period of time and reflected the size-related diet shift of this fish. Bellamya aeruginosa and Corbicula fluminea were used to establish the baseline carbon signal of benthic and pelagic food webs, and these data were used to parameterize a 2-source mixing model to estimate in consumers the contribution of carbon derived from benthic versus pelagic food webs. Mixing models showed that small lake anchovy derived only 37% of their carbon from benthic food web, indicating increased reliance on pelagic prey, whereas benthic prey contributed 71% of large lake anchovy diet, suggesting greater use of benthic sources. These data indicate that there was a change in lake anchovy feeding strategy related to their size, suggesting a role in dynamic coupling between pelagic and benthic food chains. The trophic position of small lake anchovy averaged 3.0, indicating a zooplankton-based diet, compared with 3.6 in large lake anchovy, indicative of an increase in piscivorous diet. Overlap in the isotopic compositions of small and large lake anchovy probably indicated that these fish occasionally shared common diets, as suggested by stomach content studies, and/or resulted from the differences in the rate of isotopic turnover depending on differences in growth rate and metabolic turnover between small and large anchovy during diet shift from pelagic to benthic food webs. This study presents the contributions of benthic and pelagic food webs supporting lake anchovy and indicates that the intraspecific isotopic dynamic should be considered when applying stable isotope analyses to infer trophic interactions in aquatic ecosystems.
Resumo:
A sediment core was collected from the centre of Wanghu Lake, in the Middle Reaches of the Yangtze River. The recent part of the core was dated using a combination of Pb-210 and spheroidal carbonaceous particle (SCP) techniques. Extrapolating this chronology dated the laminated section of the core, between 723 and 881 mm, to the first half of the 18th century and this section was selected for detailed study. The thicknesses of the laminae were measured using reflecting and polarizing microscopes whilst geochemistry was determined by an electron probe. The thickness of the dark layers was found to be positively correlated with titanium concentrations, and negatively correlated with aluminium and potassium concentrations. The thickness of the light layers was found to be negatively correlated with the concentrations of titanium. It is concluded that the dark layers were deposited from the Fushui River, a tributary of the Yangtze River, under periods of normal flow whilst the light Layers were mainly deposited from the Yangtze River itself during flood periods. Documentary evidence for floods occurring in the take catchment corresponded with thick laminations of high titanium concentration. Further, two of the three thickest, light laminations with low titanium concentrations were found to be synchronous with recorded flood dates of the main Yangtze River in its Middle Reaches, but one was synchronous with a local drought. These data suggest that the Lake sediment provides an archive of the relative water levels of the Yangtze and Wanghu including floods of both the main Yangtze River and the local hydrological regime. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A 11-week growth trial was conducted in a flow-through system with juvenile gibel carp Carassius auratus gibelio to evaluate the effects of gradual replacement of fish meal (FM) by meat and bone meal (MBM) on growth performance, phosphorus (P) and nitrogen (N) loading. Six isonitrogenous (crude protein: 410 g kg(-1)) and isoenergetic (gross energy: 18 kJ g(-1)) diets were formulated. FM was used as the control protein. In the other five diets, 20, 40, 60, 80 and 100% FM protein was substituted with MBM20, MBM40, MBM60, MBM80, MBM100, respectively. Total P content in the diets ranged from 16.0 to 28.3 g kg(-1) and the available P was 5.0-6.6 g kg(-1). The results showed that the best growth was achieved with fish fed on the control diet and MBM20. Final body weight, weight gain, feed efficiency, protein retention efficiency and energy retention efficiency decreased with increased dietary MBM. No significant differences were found in the feeding rate and hepatosomatic index between the groups. Apparent digestibility coefficient (ADC) of dry matter, protein and P decreased with increase in dietary MBM, while there were no significant differences in the ADC of energy. P and N retention decreased linearly while P and N loading increased linearly with the increased dietary MBM levels. No significant differences were observed in the activity of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase, as well as pyruvate kinase in liver or in serum. Total superoxide dismutase activity in MBM20 was significantly higher than that of MBM100.
Resumo:
In this study, the seasonal, vertical distribution of various phosphorus and nitrogen forms in the sediment and overlying water of Donghu Lake were investigated. The concentration of total nitrogen (TN) in overlying water was high in spring and autumn, but that of NO3--N reached its peak in autumn. From summer to autumn and from winter to spring, the concentration of phosphorus in overlying water decreased, while it increased from autumn to winter. Vertical characteristic forms of phosphorus in sediment cores are total phosphorus (TP), labile phosphorus (LP), Fe-P and Al-P, obviously enriched in the surface layer (0-10 cm), but their concentrations are observably reduced along with the depth of sediment. The research is of important theoretical and practical value to understand the status and to control the developmental trend of eutrophication in Donghu Lake.
Resumo:
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP > 0.1 mgL(-1), NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than anti nitrification. When 0.1 mgL(-1)> TP > 0.035 mgL(-1), TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP < 0.035 mgL(-1), inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TIP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.
Resumo:
Sediment core samples were collected in the largest urban Lake Donghu (Stations I and II) in China, and the activities of Pb-210, Ra-226 and Cs-137 were measured by gamma-ray spectrometry. The sedimentation rates, calculated by 210Pb constant rate of supply (CRS) model, ranged from 0.11 to 0.65 (average 0.39) cm(.)y(-1) at Station I, and from 0.21 to 0.78 (average 0.46) cm(.)y(-1) at Station II. Sedimentation rate calculated by Cs-137 as a time marker was 0.55 cm(.)y(-1) at Station II. Based on the average sedimentation rate, we obtained 769 and 147 t(.)y(-1) for nitrogen and phosphorus retentions in Lake Donghu sediments, respectively.
Resumo:
The nutritional function of monosaccharides, disaccharides and polysaccharides for omnivorous gibel carp and carnivorous Chinese longsnout catfish were investigated and the ability of these two species to utilize carbohydrates was compared. For each species, triplicate groups of fish were assigned to each of five groups of isoenergetic and isonitrogenous experimental diets with different carbohydrate sources: glucose, sucrose, dextrin, soluble starch (acid-modified starch) and alpha-cellulose. The carbohydrates were included at 60 g kg(-1) in Chinese longsnout catfish diets and at 200 g kg(-1) in gibel carp diets. A growth trial was carried out in a recirculation system at 27.8 +/- 1.9 degrees C for 8 weeks. The results showed that fish with different food habits showed difference in the utilization of carbohydrate sources. For gibel carp, better specific growth rate (SGR) and feed efficiency (FE) were observed in fish fed diets containing soluble starch and cellulose, but for Chinese longsnout catfish, better SGR and FE were observed in fish fed diets containing dextrin and sucrose. Apparent digestibility coefficient of dry matter (ADC(d)) and apparent digestibility coefficient of energy (ADC(e)) were significantly affected by dietary carbohydrate sources in gibel carp. ADC(d) and ADC(e) significantly decreased as dietary carbohydrate complexity increased in Chinese longsnout catfish except that glucose diet had medium ADC(d) and ADC(e). In both species, no significant difference of apparent digestibility coefficient of protein was observed between different carbohydrate sources. Dietary carbohydrate sources significantly affected body composition, and liver phosphoenolpyruvate carboxykinase (PEPCK), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME) activities also varied according to dietary carbohydrate complexity. Fish with different food habits showed different abilities to synthesize liver glycogen, and the liver glycogen content in gibel carp was significantly higher than in Chinese longsnout catfish. The influence of carbohydrate source on gluconeogenesis and lipogenesis was also different in the two fish species.
Resumo:
In this study, we investigated the effects of animal-plant protein ratio in extruded and expanded diets on nutrient digestibility, nitrogen and energy budgets of juvenile soft-shelled turtle (Pelodiscus sinensis). Four extruded and expanded feeds (diets 1-4) were formulated with different animal-plant protein ratios (diet 1, 1.50:1; diet 2, 2.95:1; diet 3, 4.92:1; diet 4, 7.29:1). The apparent digestibility coefficients (ADCs) of dry matter and crude lipid for diet 1 were significantly lower than those for diets 2-4. There was no significant difference in crude protein digestibility among diets 1-4. The ADC of carbohydrate was significantly increased with the increase in animal-plant protein. Although nitrogen intake rate, faecal nitrogen loss rate and excretory nitrogen loss rate of turtles fed diet 1 were significantly higher than those fed diets 2-4, nitrogen retention rate, net protein utilization and biological value of protein in these turtles were significantly lower than those fed diets 2-4. In addition, energy intake rate, excretory energy loss rate and heat production rate of turtles fed diet 1 were also significantly higher than those fed diets 2-4. Faecal energy loss was significantly reduced with the increase in the animal-plant protein ratio. The ADC of energy and assimilation efficiency of energy significantly increased with a higher animal-plant protein ratio. The growth efficiency of energy in the group fed diet 1 was significantly lower than those in the groups fed diets 2-4. Together, our results suggest that the optimum animal-plant protein ratio in extruded and expanded diets is around 3:1.
Resumo:
Food web structure was studied by using carbon and nitrogen isotope ratios in a hypereutrophic subtropical Chinese lake, Lake Donghu. High external nutrient loading and the presence of abundant detritus from submersed macrophytes were responsible for the high sediment delta(15)N and delta(13)C, respectively. C-13 was significantly higher in submersed macrophytes than in other macrophytes. The similar delta(13)C values in phytoplankton, zooplankton, zoobenthos, and planktivorous fish indicate that phytoplankton was the major food source for the consumers. By using a delta(15)N mass balance model, we estimate that the contributions of zooplankton to the diet of silver carp and bighead carp were 54% and 74%, respectively, which is in agreement with previous microscopic observations on intestinal contents of these fishes.
Resumo:
Total alkaline phosphatase activity (APA) and soluble reactive phosphorus (SRP) concentrations were measured in municipal wastewater, and a shallow Chinese freshwater lake receiving it. Activities of Dissolved alkaline phosphatase ( ADAP) in overlying and interstitial water were also analyzed monthly at three sites for several years. The lake was enriched with SRP and alkaline phosphatase by discharge of the wastewater, indicating that the inclusion of APA for estimating water pollution was reasonable. Annual data showed that APA in coarser fraction was significantly higher at the site receiving more wastewaters, both in surface and overlying water, suggesting that resuspension of enzyme most likely occurred in the basin heavily discharged. ADAP was an order of magnitude higher in the wastewater than those in lake waters, and was generally higher in interstitial water, a feature more striking at the site receiving more discharges. Besides, it was irrespectively inhibited by Na2WO4, L-cysteine and EDTA-Na, but stimulated by Cu2+, Zn2+, CTAB and Triton X-100 in interstitial, overlying and surface waters. This similarity of responding patterns to the stressors indicated an analogy between dissolved alkaline phosphatase in water column and that in interstitial water, supporting the hypothesis that the polluted sediments act as source of dissolved alkaline phosphatase in eutrophic lakes.
Resumo:
A cyanobacterial strain, which produced high content of microcystin-LR (MC-LR) but no rnicrocystin-RR (MC-RR), was isolated from the hypertrophic Dianchi Lake in China and identified as Microcystis aeruginosa DC-1. Effects of nitrogen containing chemicals and trace elements on the growth and the production of MC-LR by this strain were Studied. In the presence of bicine, compared with urea and ammonium, nitrate greatly promoted the growth and the production of MC-LR. However, leucine and arginine, which were the constitutional components in the molecular structure of MC-LR or RR, inhibited the production of MC-LR. Iron and silicon up to 10mg/L had little effects on the growth of M. aeruginosa DC-1, but the production of MC-LR was apparently enhanced. Under all conditions studied here, only MC-LR but no RR was detected within the cells of M. aeruginosa DC-1. Thus, chemical forms of nitrogen, rather than the usually concerned the total nitrogen, Lind trace elements played important roles in the production of MC toxins during cyanobacterial blooms.
Resumo:
A unicellular marine picoplankton, Nannochloropsis sp., was grown under CO2-enriched photoautotrophic or/and acetate-added mixotrophic conditions. Photoautotrophic conditions with enriched CO2 of 2800 mul CO2 l(-1) and aeration gave the highest biomass yield (634 mg dry wt l(-1)), the highest total lipid content (9% of dry wt), total fatty acids (64 mg g(-1) dry wt), polyunsaturated fatty acids (35% total fatty acids) and eicosapentaenoic acid (EPA, 20:5omega3) (16 mg g(-1) dry wt or 25% of total fatty acids). Mixotrophic cultures gave a greater protein content but less carbohydrates. Adding sodium acetate (2 mM) decreased the amounts of the total fatty acids and EPA. Elevation of CO2 in photoautotrophic culture thus enhances growth and raises the production of EPA in Nannochloropsis sp.
Resumo:
Comparative studies on macrozoobenthos were done in 2 shallow mesotrophic lakes in the middle basins of the Yangtze River, China: Lake Biandantang where macrophytes were abundant, and Lake Houhu where macrophytes were scarce Samples were taken monthly at 4 stations in each lake from April 1997 to March 1999, and a total of 67 and 31 tara of macrozoobenthos were recorded in Lake Biandantang and Lake Houhu, respectively. Both annual mean density and biomass of macrozoobenthos were higher in Lake Biandantang than in Lake Houhu: 780 vs 532 indivials/m(2) and 37.1 vs 25.9 g wet mass/m(2), respectively. Abundance of functional feeding groups followed the order: scraper > collector > predator > shredder in Lake Biandantang, and collector > predator > scraper > shredder in Lake Houhu. Only 1 density peak occurred from winter to early spring in Lake Houhu; however, in Lake Biandantang, there were 2 peaks, the winter peak and spring peak. K-dominance curves and Shannon-Wiener, Simpson, and Margelef indices indicated that macrozoobenthos were more diverse in Lake Biandantang than in Lake Houhu Our study suggests that, in shallow lakes, submerged macrophytes are essential for the maintenance of biodiversity of macrozoobenthos mainly because the macrophytes increase habit heterogeneity and availability of suitable food, and may also decrease predation by fish on the macrozoobenthos.
Resumo:
Budgets and dynamics of nitrogen and phosphorus in Lake Donghu were investigated from Oct. 1997 to Sept. 1999. The water residence time was estimated to be 89 days in 1997-1998 and 124 days in 1998-1999. The total external loadings were 53 g N m(-2) yr(-1) and 3.2 g P m(-2) yr(-1) in 1997-1998, and 42 g N m(-2) yr(-1) and 3.1 g P m(-2) yr(-1) in 1998-1999. On average, about 80% of nitrogen and phosphorus input was from sewage outlets, while the rest was from land runoff and precipitation. Ammonium ion was the most abundant form of inorganic nitrogen in the sewage. The nutrient output was mainly through water outflow and fish catch. The percentages of nutrients in fish were estimated to be 7.8%-11.2% for nitrogen and 47.6%- 49.6% for phosphorus. Lake Donghu has a very high nutrient retention (63% for nitrogen and 79% for phosphorus) mainly due to its closure and long water residence time. Sedimentation is an important nutrient retention mechanism in this lake. Using mass balance method, we estimated that denitrification of Lake Donghu involves about 50% of the retained nitrogen. Lake Donghu is rich in inorganic nitrogen and phosphorus and showed great seasonal variation.
Resumo:
Ecological studies on benthic nematodes were conducted in two small, shallow lakes in the middle Yangtze basin, China; Lake Houhu, where the main source of primary production is phytoplankton and Lake Biandantang where it is predominantly macrophytic in origin. Monthly sampling was carried out from April 1996 to March 1997. A total of 36 species of nematodes was found in Lake Houhu and 51 species in Lake Biandantang. The dominant trophic groups of nematodes were algophages in Lake Houhu and bacteriophages associated with omniphages and phytophages in Lake Biandantang. Community analyses based on K-dominance curves, Shannon-Wiener and Simpson diversity indices, demonstrate that the benthic nematodes are more diverse in Lake Biandantang than in Lake Houhu. The results suggest that the abundance of submerged vegetation is essential for maintenance of habitat heterogeneity and biodiversity of nematodes in shallow lakes.