283 resultados para membrane permeability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the objective of making calcium alginate gel beads with small and uniform size, membrane emulsification coupled with internal gelation was proposed. Spherical gel beads with mean size of about 50 mum, and even smaller ones in water, and with narrow size distribution were successfully obtained. Experimental studies focusing mainly on the effect of process parameters on bead properties were performed. The size of the beads was mainly dependent on the diameter of the membrane pores. High transmembrane pressure made for large gel beads with wide size distribution. Low sodium alginate concentration produced nonspherical beads, whereas a high concentration was unsuitable for the production of small beads with narrow distribution. Thus 1.5% w/v was enough. A high surfactant concentration favored the formation of small beads, but the adverse effect on mass transfer should be considered in this novel process. (C) 2002 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affinity chromatography is unique among separation methods as it is the only technique that permits the purification of proteins based on biological functions rather than individual physical or chemical properties. The high specificity of affinity chromatography is due to the strong interaction between the ligand and the proteins of interest. Membrane separation allows the processing of a large amount of sample in a relatively short time owing to its structure, which provides a system with rapid reaction kinetics. The integration of membrane and affinity chromatography provides a number of advantages over traditional affinity chromatography with porous-bead packed columns, especially with regard to time and recovery of activity. This review gives detailed descriptions of materials used as membrane substrates, preparation of basic membranes, coupling of affinity ligands to membrane supports, and categories of affinity membrane cartridges. It also summarizes the applications of cellulose/glycidyl methacrylate composite membranes for proteins separation developed in our laboratory. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plasticized Cr3+ ion sensor by incorporating 2,3,8,9-tetraphenyl-1,4,7,10-tetraazacyclododeca-1,3,7,9-tetraene (TTCT) ionophore exhibits a good potentiometric response for Cr3+ over a wide concentration range (1.0×10-6-1.0×10-1 M) with a slope of 19.5 mV per decade. The sensor response is stable for at least three months. Good selectivity for Cr3+ in comparison with alkali, alkaline earth, transition and heavy metal ions, and minimal interference are caused by Li+, Na+, K+, Co2+, Hg2+, Ca2+, Pb2+ and Zn2+ ions, which are known to interfere with other chromium membrane sensors. The TTCT-based electrode shows a fast response time (15 s), and can be used in aqueous solutions of pH 3 - 5.5. The proposed sensor was used for the potentiometric titration of Cr3+ with EDTA and for a direct potentiometric determination of Cr3+ content in environmental samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poly(vinyl chloride)(PVC)-based membrane of 15-crown-5 exhibits a good response for lead(II) ions over a wide concentration range. The response time of the sensor is 30 s and the membrane can be used for more than four months without observing any divergence. The selectivity of the sensor is comparable with those reported for other such electrodes. It was possible to determine lead in polluted waters using this electrode assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schiff base compounds refer to the branch of supra-molecules and can be used as sensing material in the construction of potentiometric ion selective electrodes (ISEs). This relatively modern field has been subject to extensive research in the period of 1999-2007 when more than 100 ISEs employing Schiff bases were constructed. The quantitative high-throughput detection of 29 cations and 7 anions has been demonstrated in various scientific branches, such as biomedicine, pharmacy, biochemistry, pharmacology, environmental chemistry, food technology, and agriculture. This review discusses Schiff base compounds and their applications in the design and development of ion selective sensors and microsensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thiosemicarbazone derivatives have been used as ion carriers for the preparation of PVC-matrix based mercury(II)-selective membrane sensors. The electrodes give near-Nernstian responses in the linear concentration range of 1.0×10-1-5.0×10-6 M with detection limits of the order of 10-6 M. The stable potentiometric signals are obtained within a short time period of 20-25s. The effect of different plasticizers has been studied and dioctylsebacate (DOS) found to give a better response in comparison to other plasticizers. Selectivity coefficient values (log KPotHg,M) have been evaluated using fixed interference method. Better selectivity for mercury(II) ions is observed over many of the monovalent (Na+, K+ and NH4+) and divalent ions (Mg2+, Ca2+, Zn2+, Pb2+, Ni2+, Co2+, etc.). The sensors have also been used as indicator electrodes in potentiometric titration of mercury(II) ions with EDTA and its determination in synthetic water samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To clarify the mechanism of organic-inorganic hybrid membrane formation by phase-inversion method, the thermodynamical and theological properties of PSF/TiO2 casting solution were investigated by the viscosity measurement and the triangle phase diagram, respectively. TiO2 introduction decreased the non-solvent tolerance of casting solution with non-solvent 20% ethanol aqueous solution, which caused thermodynamic enhancement of phase separation, and also resulted in the change of theological properties from Newtonian fluid to non-Newtonian fluid and the viscosity increase of casting solution, which induced rheological hindrance in demixing process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study. Nafion (R) 117 membrane is surface-modified with mesoporous silica layers through in situ surfactant-templated sol-gel reaction. The reaction makes use of tetraethyl orthosilicate (TEOS) under acidic condition via dip-coating technique on both sides. Scanning electron microscopy (SEM), Fourier transformation infrared (FTIR), and thermogravimetric analysis (TGA) are employed to characterize the resultant membranes. Proton conductivity and methanol permeability of the membranes are also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and characterization of novel acid-base polyimide membranes for the use in polymer electrolyte membrane fuel cell is presented in this paper. The sulfonated polyimides (SPIs) bearing basic triphenylamine groups were easily synthesized using 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), sulfonated diamine of 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), and nonsulfonated diamines of 4,4'-diaminotriphenylamine (DATPA). The effects of the structure of the dianhydride and diamines on the properties of SPI membranes were evaluated through the study of membrane parameters including water sorption, proton conductivity, water stability, dimensional changes, and methanol permeability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel sulfonated poly(arylene-co-imide)s were synthesized by Ni(0) catalytic copolymerization of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and naphthalimide dichloride monomer. The synthesized copolymers with the - SO3H group on the side-chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. Because of the introduction of electron donating phenoxy groups into naphthalimide moieties, the hydrolysis of the imide rings was depressed. The resulting copolymers exhibited excellent water stability. The copolymer membranes display no apparently change in appearance, flexibility, and toughness after a soaking treatment in pressurized water at 140 degrees C for 250 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different effects of divalent metal ions on electrochemiluminescence (ECL) sensor with Ru(bPY)(3)(2+) immobilized in Eastman-AQ membrane were investigated. Mg2+,Ca2+ and Fe2+ can elevate the ECL of Ru(bpY)(3)(2+)/proline; while metal ions that underwent redox reactions on the electrode such as Mn2+ and Co2+ presented intensive quenching effects on Ru(bpy)(3)(2+) ECL. Also, the quenching effect of Mn2+ on the ECL sensor with Ru(bpY)(3)(2+) immobilized in Eastman-AQ membrane enhanced to about 30-folds compared with the case that Ru(bpy)(3)(2+) was dissolved in phosphate buffer, and the enhanced quenching effects of Mn2+ were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two series of sulfonated poly(phenylquinoxaline)s (SPPQ-x and SPPQ(O)-x, x refers to molar percentage of sulfonated tetraamine monomer) were first synthesized from a sulfonated tetraamine (4,4'-bis(3,4-diaminophenoxy)biphenyl-3.3'-disulfonic acid) and two aromatic bisbenzils (4-phenylglyoxalylbenzil and p,p'-oxydibenzil) in a mild condition. The structures of SPPQ-x and SPPQ(0)-x were characterized by IR and H-1 NMR spectra. The properties of these polymer films, such as water uptake, water swelling ratio, proton conductivity, thermal properties, methanol permeability, hydrolytic and oxidative stability were also investigated. The resulting polymers generally showed good solubility in DMAc and DMSO. Flexible and tough membranes with high mechanical strength were prepared. They show very high thermal, thermooxidative, hydrolytic stabilities and low methanol permeability. SPPQ-100 with the IEC value (2.41 mmol/g) displays the conductivity of 0.1 S/cm and a swelling ratio of 7.3% at 100 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most nanofiltration (NF) membranes are composite and have a polyamide thin film prepared by interfacial polymerization. Their performances mainly correlate the structure of the thin film and monomers used for its preparation. In this work, a novel thin-film composite (TFC) nanofiltration membrane was successfully prepared from 3,3',5,5'-biphenyl tetraacyl chloride (mm-BTEC) and piperazine (PIP) through interfacial polymerization. Attenuated reflectance infrared (ATR-IR) and X-ray photoelectronic spectroscopy (XPS) were used to characterize the chemical composition of the membrane surface. The membrane performance was optimized by studying preparation parameters including monomer concentration, reaction time, and pH of aqueous phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new blend system consisting of an amorphous sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) and the semi-crystalline poly(vinylidene fluoride) (PVDF) was prepared for proton exchange membranes. The miscibility behavior of a series of blends of SPBIBI with PVDF at various weight ratios was studied by WXRD, DSC and FTIR. The properties of the blend membranes were investigated, and it was found that the introduction of PVDF in the SPBIBI matrix altered the morphological structure of the blend membranes, which led to the formation of improved connectivity channels. For instance, the conductivity of the blend membrane containing 10 wt% PVDF displayed the highest proton conductivity (i.e., 0.086 S cm(-1)) at room temperature, a value almost twofold that of the pristine SPBIBI membranes (i.e., 0.054S cm(-1)) under identical conditions.