141 resultados para maskless lithography
Resumo:
CaIn2O4:Eu3+ phosphors were prepared by a Pechini so-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), cathodoluminescence (CL) spectra as well as lifetimes were utilized to characterize the samples. The XRD results reveal that the samples begin to crystallize at 800 degrees C, and the crystallinity increases upon raising the annealing temperature. The FE-SEM images indicate that the CaIn2O4:Eu3+ samples consist of fine and spherical grains with size around 200-400 nm. Under the excitation of ultraviolet light and low-voltage electron beams, the CaIn2O4:Eu3+ phosphors show the characteristic emissions of Eu3+ ((DJ-7FJ ')-D-5 J, J ' = 0, 1, 2, 3 transitions). The luminescence color can be tuned from white to orange to red by adjusting the doping concentration of EU3+. The corresponding luminescence mechanisms have been proposed.
Resumo:
Y2O3: Eu3+ phosphor layers were deposited on monodisperse SiO2 particles with different sizes ( 300, 500, 900, and 1200 nm) via a sol-gel process, resulting in the formation of Y2O3: Eu3+@SiO2 core-shell particles. X-ray diffraction ( XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy ( TEM), time-resolved photoluminescence ( PL) spectra, and lifetimes were employed to characterize the Y2O3: Eu3+@SiO2 core-shell samples. The results of XRD indicated that the Y2O3: Eu3+ layers began to crystallize on the silica surfaces at 600 degrees C and the crystallinity increased with the elevation of annealing temperature until 900 degrees C. The obtained core-shell particles have perfect spherical shape with narrow size distribution and non-agglomeration. The thickness of the shells could be easily controlled by changing the number of deposition cycles ( 60 nm for three deposition cycles). Under the excitation of ultraviolet ( 250 nm), the Eu3+ ion mainly shows its characteristic red ( 611 nm, D-5(0)-F-7(2)) emissions in the core-shell particles from Y2O3: Eu3+ shells.
Resumo:
Nanocyrstalline Tb3+-doped LaGaO3 phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction, field-emission scanning electron microscopy (FESEM), photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the synthesized phosphors. XRD results reveal that the sample begins to crystallize at 900 degrees C and pure LaGaO3 phase can be obtained at 1000 degrees C. FESEM images indicate that the Tb3+-doped LaGaO3 phosphors are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light and low-voltage electron beams (0.5-3 kV), the Tb3+-doped LaGaO3 phosphors show the characteristic emissions from the LaGaO3 host lattice and the Tb3+ (D-5(3,4)-F-7(6,5,4,3) transitions). The emission colors of Tb3+-doped LaGaO3 phosphors can be tuned from blue to green by changing the excitation wavelength of ultraviolet light and the doping concentration of Tb3+ to some extent. Relevant luminescence mechanisms are discussed.
Resumo:
SrIn2O4:Dy3+/Pr3+/Tb3+ white/red/green phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the samples. XRD reveal that the samples begin to crystallize at 800 degrees C and pure SrIn2O4 phase can be obtained at 900 degrees C. FE-SEM images indicate that the SrIn2O4:Dy3+, SrIn2O4:Pr3+, and SrIn2O4:Tb3+ samples consist of fine and spherical grains with size around 200-400 nm. Under the excitation of ultraviolet light and low-voltage electron beams (1 - 5 kV), the SrIn2O4:Dy3+, SrIn2O4: Pr3+, and SrIn2O4: Tb3+ phosphors show the characteristic emissions of Dy3+ (F-4(9/2) - H-6(15/2) at 492 nm and 4F(9/2) - 6H(13/2) at 581 nm, near white), Pr3+ (P-3(0) - H-3(4) at 493 nm, D-1(2) - H-3(4) at 606 nm, and P-3(0) - H-3(6) at 617 nm, red) and Tb3+ (D-5(4) - F-7(6,5,4,3) transitions dominated by D-5(4) - F-7(5) at 544 nm, green), respectively. All of the luminescence resulted from an efficient energy transfer from the SrIn2O4 host lattice to the doped Dy3+, Pr3+, and Tb3+ ions, and the luminescence mechanisms have been proposed.
Resumo:
The Ba2GdNbO6: Eu3+/Dy3+ and Li+-doped Ba2GdNbO6: Eu3+/Dy3+ phosphors were prepared by solid-state reaction process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and photoluminescence (PL) as well as lifetimes, was utilized to characterize the resulting phosphors. Under the excitation of ultraviolet light, the Ba2GdNbO6: Eu3+/Dy3+ and Li+-doped Ba2GdNbO6: Eu3+/Dy3+ show the characteristic emissions of Eu3+ (D-5(0)-F-7(1,2,3) transitions dominated by D-5(0)-F-7(1) at 593 nm) and Dy3+ (F-4(9/2)-H-6(15/2),(13/2) transitions dominated by F-4(9/2)-H-6(15/2) at 494 nm), respectively. The incorporation of Li+ ions into the Ba2GdNbO6: Eu3+/Dy3+ phosphors has enhanced the PL intensities depending on the doping concentration of Li+, and the highest emission was obtained in Ba2Gd0.9NbO6: 0.10Eu(3+), 0.01Li(+) and Ba2Gd0.95NbO6: 0.05Dy(3+), 0.07Li(+), respectively. An energy level diagram was proposed to explain the luminescence process in the phosphors.
Resumo:
In difference to compact objects of a similar size, toroidal structures have some distinguishing properties that originate from their open inner cavity and closed circuit. Here, a general facile methodology is developed to prepare composite rings with varied compositions on a large scale by using core-shell toroids assembled from tri-block copolymers of poly(4-vinyl pyridine) (PVP)/polystyrene (PS)/PVP. Taking advantage of the complexation ability of the PVP shell, varied components that range from polymers, inorganic materials, metals and their compounds, as well as pre-formed nanoparticles are introduced to the toroidal structures to form composite nanostructures. Metal ions can be adsorbed by PVP through complexation. After in situ reduction, a large number of metal-based functional materials can be prepared. PVP is alkaline, and thus capable of catalyzing the sol-gel process to generate an inorganic shell. Furthermore, pre-formed nanoparticles can also be absorbed by the shell through specific interactions. The PS core is not infiltrative during synthesis, and hollow rings can be derived after the polymer templates are removed.
Resumo:
Our previous investigation showed that the ordered hexagonal island pattern in the phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/P2VP) formed due to the convection effect by proper control of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to P2VP. In this paper, we further illustrate that, by adding a proper amount of the surfactant Triton X-100 to the PS/P2VP toluene solution, the ordered hexagonal island pattern can be transformed to the ordered honeycomb pattern. The effects of the amount of Triton X-100 on the surface morphology evolution and the pattern transformation are discussed in terms of the collapse of Triton X-100, phase separation between Triton X-100/P2VP and PS, the interfacial interaction between Triton X-100/P2VP and the mica substrate, and the Benard-Marangoni convection.
Resumo:
The authors report the formation of highly oriented wrinkling on the surface of the bilayer [polystyrene (PS)/poly(vinyl pyrrolidone) (PVP)] confined by a polydimethylsiloxane (PDMS) mold in a water vapor environment. When PVP is subjected to water vapor, the polymer loses its mechanical rigidity and changes to a viscous state, which leads to a dramatic change in Young's modulus. This change generates the amount of strain in the bilayer to induce the wrinkling. With a shape-controlled mold, they can get the ordered wrinkles perfectly perpendicular or leaned 45 S to the channel orientation of the mold because the orientation of the resultant force changes with the process of water diffusion which drives the surface to form the wrinkling. Additionally, they can get much smaller wrinkles than the stripe spacing of PDMS mold about one order. The wrinkle period changes with the power index of about 0.5 for various values of the multiplication product of the film thicknesses of the two layers, namely, lambda similar to (h(PS)h(PVP))(1/2).
Resumo:
The phase behavior of a miscible PS/PVME (80/20, w/w) blend film in a confined geometry has been investigated at the annealing temperature much lower than the low critical solution temperature (LCST) of the blend. When the annealing temperature (52degreesC) is near the glass transition temperature of the blend (51.2degreesC), PVME-rich phase at the air-film surface under a microchannel forms smaller protrusion. When the annealing temperature is increased to 70degreesC, the protruding stripes, which are almost developed, are mainly composed of the mobile PVME-rich phase. These results reveal that the capillary force lead to the enrichment of PVME-rich phase at the air-polymer interface of a PDMS microchannel, that is, the capillary force lithography (CFL) can induce the phase separation of PS/PVME blend films.
Resumo:
Gold nanoparticles (3.1-5.0 nm in size) surface-derivatized with both electroactive and nonelectroactive self-assembled monolayers were synthesized. The surface-derivatized electroactive particles can be easily oxidized/reduced at an electrode surface based on the diffusion-controlled current-voltage curve observed in cyclic voltammetry measurements. Spectroelectrochemical investigation demonstrated that the maximum absorbance of the nanoparticles in their oxidized state red-shifted compared with their reduced state to a different extent according to their size distribution. In the case of the particles surface-derivatized with nonelectroactive monolayers, much less shift was observed. This study showed that surface plasmon absorbance of gold nanoparticles was not only related to core charge states but was also influenced by surface charge states as well.
Resumo:
In this letter, a simple and versatile approach to micropatterning a metal film, which is evaporated on a Si substrate coated with polymer, is demonstrated by the use of a prepatterned epoxy mold. The polymer interlayer between the metal and the Si substrate is found important for the high quality pattern. When the metal-polymer-Si sandwich structure is heated with the temperature below T-m but above T-g of the polymer, the plastic deformation of the polymer film occurs under sufficiently high pressure applied. It causes the metal to crack locally or weaken along the pattern edges. Further heating while applying a lower pressure results in the formation of an intimate junction between the epoxy stamp and the metal film. Under these conditions the epoxy cures further, ensuring adhesion between the stamp and the film. The lift-off process works because the adhesion between the epoxy and the metal film is stronger than that between the metal film and the polymer. A polymer field effect transistor is fabricated in order to demonstrate potential applications of this micropatterning approach.
Resumo:
We have studied the surface morphology of symmetric poly(styrene)-block-poly(methyl methacrylate) diblock copolymer thin films after solvent vapor treatment selective for poly(methyl methacrylate). Highly ordered nanoscale depressions or striped morphologies are obtained by varying the solvent annealing time. The resulting nanostructured films turn out to be sensitive to the surrounding medium, that is, their morphologies and surface properties can be reversibly switchable upon exposure to different block-selective solvents.
Resumo:
We have studied a morphological instability of a double layer comprising the polymer film and air gap confined between the two plates set to different temperatures. The temperature gradient across the double layer causes the breakup of the polymer film into well-defined columnar, striped or spiral structures spanning the two plates. The pattern formation mechanisms have been discussed. The formed patterns can be transferred to produce PDMS stamp, a key element of soft lithography for future microfabrication.
Resumo:
Ordered hexagonal droplets patterns in phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/PVP) formed due to the convection effect by solvent evaporation. The influences of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to PVP on the PVP-rich domains pattern formation and distributions were investigated by atomic force microscope (AFM). Only in an appropriate range of molecular weight of PS, can the ordered pattern form. Too low or too high molecular weight of PS led no ordered pattern due to the viscosity effects. The increase of solvent evaporation rate decreased the mean radius of the PVP-rich domains and the intervals between the centers of the domains due to the enhancement of the viscosity on the top layer of the fluid film. The increase of the weight ratio of PS to PVP decreased mean radius of the PVP-rich domains whereas the intervals between the centers of droplets remained constant. Therefore, the size and the distributions of ordered patterns can be tuned by the polymer molecular weight, the weight ratio of the two components and the solvent evaporation rate.
Resumo:
Patterned self-adaptive PS/P2VP mixed polymer brushes were prepared by "grafting to" approach combining with microcontact printing (muCP). The properties of the patterned surface were investigated by lateral force microscopy (LFM), XPS and water condensation figures. In the domains with grafted P2VP, the PS/P2VP mixed brushes demonstrated reversible switching behavior upon exposure to selective solvents for different components. The chemical composition of the top layer as well as the surface wettability can be well tuned due to the perpendicular phase segregation in the mixed brushes. While in the domains without grafted P2VP, the grafted PS did not have the capability of switching. The development and erasing of the pattern is reversible under different solvent treatment.