113 resultados para marine sponges
Resumo:
Two new and one known squalenoid-derived triterpenoids. namely, laurenmariannol (1) and (21 alpha)-21-hydroxythyrsiferol (2). and the known thyrsiferol (3) were isolated and identified from the marine red alga Laurencia mariannensis, which was collected off the coast of Hainan and Weizhou Islands of China. The structures of these compounds were established by means of spectroscopic analyses, as well as by comparison with literature data. Compounds I and 2 displayed significant cytotoxic activity against P-388 tumor cells with IC50 values of 0.6 and 6.6 mu g/ml, respectively.
Resumo:
Two new brominated diterpenes, namely, laurendecumtriol (1) and 11-O-deacetylpinnaterpene C (2), one new polybromoindole, 2,3,4,6-tetrabromo-1-methyl-1H-indole (7), and six known natural products were isolated and identified from the marine red alga Laurencia decumbens. Their structures were elucidated on the basis of detailed spectroscopic and mass-spectrometric analysis as well as by comparison with literature data. Based on 2D-NMR experiments, the previously reported NMR data for pinnaterpene C (3) were reassigned.
Resumo:
Cultivation of the fungal strain Eurotium rubrum, an endophytic fungus that was isolated from the inner tissue of stems of the mangrove plant Hibiscus tiliaceus, resulted in the isolation of two new dioxopiperazine derivatives, namely, dehydrovariecolorin L (1) and dehydroechinulin (2), together with eight known dioxopiperazine compounds including variecolorin L (3), echinulin (4), isoechinulin A (5), dihydroxyisoechinulin A (6), preechinulin (7), neoechinulin A (8), neoechinulin E (9), and cryptoechinuline D (10). The structures of the isolated compounds were determined by extensive analysis of their spectroscopic data as well as by comparison with literature. Compounds 1, 2, 9, and 10 were investigated for their a,a-diphenyl-beta-picrylhydrazyl (DPPH) radical-scavenging activity. In addition, the new compounds, 1 and 2, were evaluated for their cytotoxic activity against the P-388, HL-60, and A549 cell lines.
Resumo:
Bacterial surface colonization is a universal adaptation strategy in aquatic environments. However, neither the identities of early colonizers nor the temporal changes in surface assemblages are well understood. To determine the identities of the most common bacterial primary colonizers and to assess the succession process, if any, of the bacterial assemblages during early stages of surface colonization in coastal water of the West Pacific Ocean, nonnutritive inert materials (glass, Plexiglas, and polyvinyl chloride) were employed as test surfaces and incubated in seawater off the Qingdao coast in the spring of 2005 for 24 and 72 h. Phylogenetic analysis of the 16S rRNA gene sequences amplified from the recovered surface-colonizing microbiota indicated that diverse bacteria colonized the submerged surfaces. Multivariate statistical cluster analyses indicated that the succession of early surface-colonizing bacterial assemblages followed sequential steps on all types of test surfaces. The Rhodobacterales, especially the marine Roseobacter clade members, formed the most common and dominant primary surface-colonizing bacterial group. Our current data, along with previous studies of the Atlantic coast, indicate that the Rhodobacterales bacteria are the dominant and ubiquitous primary surface colonizers in temperate coastal waters of the world and that microbial surface colonization follows a succession sequence. A conceptual model is proposed based on these findings, which may have important implications for understanding the structure, dynamics, and function of marine biofilms and for developing strategies to harness or control surface-associated microbial communities.
Resumo:
An orange-pigmented, Gram-negative, nonmotile, strictly aerobic and oxidase- and catalase-positive bacterium (SM-A87(T)) was isolated from the deep-sea sediment of the southern Okinawa Trough area. The main fatty acids were i15 : 0, i17 : 0 3OH, i15 : 1 G, i17 : 1 omega 9c, 15 : 0, i15 : 0 3OH and summed feature 3 (comprising i-15 : 0 2OH and/or 16 : 1 omega 7c). MK-6 was the predominant respiratory quinone. DNA G+C content was 35.8 mol%. Flexirubin-type pigments were absent. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain SM-A87(T) formed a distinct lineage within the family Flavobacteriaceae, with < 93% sequence similarity to the nearest strain of genus Salegentibacter. Moreover, strain SM-A87(T) could be distinguished from the nearest phylogenetic neighbors by a number of chemotaxonomic and phenotypic properties. On the basis of polyphasic analyses, it is proposed that strain SM-A87(T) be classified in a novel genus and a new species in the family Flavobacteriaceae, designated Wangia profunda gen. nov., sp. nov. The type strain is SM-A87(T) (CCTCC AB 206139(T)=DSM 18752).
Resumo:
Indexes of sediment grain size, sedimentation rates, geochemical composition, heavy minerals, benthic foraminiferal fauna, indicator species of the Kuroshio Current, paleo-SST and carbonate dissolution of core E017 conformably suggest a great marine environmental change occurring at about 10.1-9.2 cal. kaBP in the southern Okinawa Trough, which may correspond to the strengthening of the Kuroshio Warm Current and re-entering the Okinawa Trough through the sea area off northeast Taiwan. The invasion of Kuroshio current has experienced a process of gradual strengthening and then weakening, and its intensity became more fluctuation during the last 5000 years. Compared to the transition of sediment grain size, geochemical composition and heavy minerals, the foraminiferal faunas show a 900-year lag, which may indicate that the invasion of Kuroshio Current and the consequent sea surface and deep-water environmental changes is a gradual process, and fauna has an obvious lag compared to environment altering. The carbonate dissolution of the Okinawa Trough has had an apparent strengthening since 9.2 cal. kaBP, and reached a maximum in the late 3000 years, which may be caused by the deep-water environmental changes due to the invasion of Kuroshio Current.
Resumo:
A new theoretical framework of tracer methods is proposed in the present contribution, on the basis of mass conservation. This model is applicable for both artificial and natural tracers. It can be used to calculate the spatial distribution patterns of sediment transport rate, thus providing independent information and verification for the results derived from empirical formulae. For the procedures of the calculation, first, the tracer concentration and topographic maps of two times are obtained. Then, the spatial and temporal changes in the concentration and seabed elevation are calculated, and the boundary conditions required are determined by field observations (such as flow and bedform migration measurements). Finally, based upon eqs. (1) and (13), the transport rate is calculated and expressed as a function of the position over the study area. Further, appropriate modifications to the model may allow the tracer to have different densities and grain size distributions from the bulk sediment.
Resumo:
Studies of abundance, diversity and distribution of antibiotic-resistant bacteria and their resistance determinants are necessary for effective prevention and control of antibiotic resistance and its dissemination, critically important for public health and environment management. In order to gain an understanding of the persistence of resistance in the absence of a specific antibiotic selective pressure, microbiological surveys were carried out to investigate chloramphenicol-resistant bacteria and the chloramphenicol acetyltransferase resistance genes in Jiaozhou Bay after chloramphenicol was banned since 1999 in China. About 0.15-6.70% cultivable bacteria were chloramphenicol resistant, and the highest abundances occurred mainly in the areas near river mouths or sewage processing plants. For the dominant resistant isolates, 14 genera and 25 species were identified, mostly being indigenous estuarine or marine bacteria. Antibiotic-resistant potential human or marine animal pathogens, such as Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis and Shewanella algae, were also identified. For the molecular resistance determinants, the cat I and cat III genes could be detected in some of the resistant strains, and they might have the same origins as those from clinical strains as determined via gene sequence analysis. Further investigation about the biological, environmental and anthropogenic mechanisms and their interactions that may contribute to the persistence of antibiotic-resistance in coastal marine waters in the absence of specific antibiotic selective pressure is necessary for tackling this complicated environmental issue.